Chemotherapeutic Potential of Carthamus Oxycantha Root Extract as Antidiarrheal and In Vitro Antibacterial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Identification, and Extraction of Plant Material
2.2. Drugs, Chemicals, and Instruments
2.3. Test Microorganisms
2.4. Test Animals
2.5. Acute Toxicity Study
2.6. Dose Selection
2.7. Experimental Design
2.7.1. Castor Oil-Induced Diarrhea
2.7.2. Magnesium Sulfate-Induced Diarrhea
2.7.3. Test Microorganisms and Growth Conditions
2.7.4. Well Diffusion Method
2.7.5. Determination of Minimum Inhibitory Concentration (MIC)
2.8. Data Analysis
3. Results
3.1. Acute Toxicity Study
3.2. Castor Oil-Induced Diarrhea
3.3. Magnesium Sulfate-Induced Diarrhea
3.4. Well Diffusion Method
3.5. Determination of Minimum Inhibitory Concentration (MIC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Batiha, G.S.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batiha, G.S.; Alkazmi, L.M.; Nadwa, E.H.; Rashwan, E.K.; Beshbishy, A.M. Physostigmine: A plant alkaloid isolated from Physostigma venenosum: A review on pharmacokinetics, pharmacological and toxicological activities. J. Drug Deliv. Therap. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.S.; Beshbishy, A.M.; El-Mleeh, A.; Abdel-Daim, M.M.; Devkota, H.P. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Hasnat, A.; Hasan, C.M.; Rashid, M.A.; Ilias, M. Pharmacological evaluation of Bangladeshi medicinal Plant—A Review. Pharmacol. Biol. 2001, 37, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspec. 2001, 109, 69–75. [Google Scholar]
- Ahmad, M.; Waheed, I.; Khalil-ur-Rehman, M.; Niaz, U.; Hassan, S.S. A review on Carthamus oxycantha. Pak. J. Pharm. 2007, 20, 1. [Google Scholar]
- Majumder, P.; Mazumder, S.; Chakraborty, M.; Chowdhury, S.G.; Karmakar, S.; Haldar, P.K. Preclinical evaluation of Kali Haldi (Curcuma caesia): A promising herb to treat type-2 diabetes. Orient. Pharm. Exp. Med. 2017, 17, 161–169. [Google Scholar] [CrossRef]
- Khalil, H.E.; Al Ahmed, A. Phytochemical Analysis and Free Radical Scavenging Activity of Carthamus oxyacantha growing in Saudi Arabia: A Comparative Study. Int. J. Pharm. Sci. Rev. Res. 2017, 45, 51–55. [Google Scholar]
- Fernandez-Martinez, M.; Del-Rio, M.; de Haro, A. Survey of safflower (Carthamus oxycantha L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 1993, 69, 115–122. [Google Scholar] [CrossRef]
- Anjani, K. Genetic variability and character association in wild safflower (Carthamus oxycantha). Indian J. Agri. Sci. 2005, 75, 516518. [Google Scholar]
- Souri, E.; Amin, G.; Dehmobed-Sharifabadi, A.; Nazifi, A.; Farsam, H. Antioxidative activity of sixty plants from Iran. Iranian J. Pharm. Res. 2004, 3, 55–59. [Google Scholar]
- Hassan, Z.; Ahmad, V.U.; Hussain, J.; Zahoor, A.; Siddiqui, I.N.; Rasool, N.; Zubair, M. Two new carthamosides from Carthamus oxycantha. Nat. Prod. Commun. 2010, 5, 419–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokomane, M.; Kasvosve, I.; Melo, E.D.; Pernica, J.M.; Goldfarb, D.M. The global problem of childhood diarrheal diseases: Emerging strategies in prevention and management. Ther. Adv. Infect. Dis. 2018, 5, 29–43. [Google Scholar] [PubMed]
- Umer, S.; Tekewe, A.; KebedeN. Antidiarrheal and antimicrobial activity of Calpurnia aurea leaf extract. BMC Complement. Altern. Med. 2013, 13, 21–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, C.H.; Janapatla, R.P.; Wang, Y.H.; Chang, H.J.; Huang, Y.C.; Lin, T.Y.; Chiu, C.H. Pseudomonas aeruginosa-associated diarrheal diseases in children. Pediatr. Infect. Dis. J. 2017, 36, 1119–1123. [Google Scholar] [CrossRef]
- Palombo, E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhea: Modes of action and effects on intestinal function. Phytother. Res. 2006, 9, 717–724. [Google Scholar] [CrossRef]
- Gaginella, T.S.; Stewart, J.J.; Olsen, W.A.; Bass, P. Actions of ricinoleic acid and structurally related fatty acids on the gastrointestinal tract. II. Effects on water and electrolyte absorption in vitro. J. Pharmacol. Exp. Ther. 1975, 195, 355–361. [Google Scholar]
- Kaur, M.; Singh, A.; Kumar, B. Comparative antidiarrheal and antiulcer effect of the aqueous and ethanolic stem bark extracts of Tinosporacordifolia in rats. J. Adv. Pharm. Technol. Res. 2014, 5, 122–128. [Google Scholar] [CrossRef]
- Batiha, G.S.; Beshbishy, A.M.; Alkazmi, L.M.; Adeyemi, O.S.; Nadwa, E.H.; Rashwan, E.K.; El-Mleeh, A.; Igarashi, I. Gas chromatography-mass spectrometry analysis, phytochemical screening and antiprotozoal effects of the methanolic Viola tricolor and acetonic Laurus nobilis extracts. BMC Complement. Altern. Med. 2020, 20, 87. [Google Scholar] [CrossRef]
- Beshbishy, A.M.; Batiha, G.E.S.; Adeyemi, O.S.; Yokoyama, N.; Igarashi, I. Inhibitory effects of methanolic Olea europaea and acetonic Acacia laeta on the growth of Babesia and Theileria. Asian Pac. J. Trop. Med. 2019, 12, 425–434. [Google Scholar]
- Zieliński, H.; Kozłowska, H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016. [Google Scholar] [CrossRef] [PubMed]
- Paveto, C.; Güida, M.C.; Esteva, M.I.; Martino, V.; Coussio, J.; Flawiá, M.M.; Torres, H.N. Anti-Trypanosoma cruzi activity of green tea (Camellia sinensis) catechins. Antimicrob. Agents Chemother. 2004, 48, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugala, N.; Vu, D.; Parkins, M.D.; Turner, R.J. Specificity in the susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus clinical isolates to six metal antimicrobials. Antibiotics 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batiha, G.E.S.; Beshbishy, A.M.; Tayebwa, D.S.; Adeyemi, O.S.; Shaheen, H.; Yokoyama, N.; Igarashi, I. The effects of trans-chalcone and chalcone 4 hydrate on the growth of Babesia and Theileria. PLoS Negl. Trop. Dis. 2019, 13, e0007030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamkar, A.M.; Nazariborun, A.; Hosseini, M. Analgesic effect of the aqueous and ethanolic extracts of clove. Avicenna. J. Phytomed. 2013, 3, 186–192. [Google Scholar]
- Beshbishy, A.M.; Batiha, G.E.S.; Alkazmi, L.; Nadwa, E.; Rashwan, E.; Abdeen, A.; Yokoyama, N.; Igarashi, I. Therapeutic effects of atranorin towards the proliferation of Babesia and Theileria parasites. Pathogen 2020, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, M.; Jestoi, M.; Nathanail, A.V.; Kokkonen, U.M.; Anttila, M.; Koivisto, P.; Karhunen, P.; Peltonen, K. Application of OECD Guideline 423 in assessing the acute oral toxicity of moniliformin. Food Chem. Toxicol. 2013, 53, 27–32. [Google Scholar] [CrossRef]
- Birru, E.M.; Asrie, A.B.; Adinew, G.M.; Tsegaw, A. Antidiarrheal activity of crude methanolic root extract of Idigofera spicata Forssk. (Fabaceae). BMC Complement. Altern. Med. 2016, 16, 272. [Google Scholar] [CrossRef]
- Abe, T.; Kunimoto, M.; Hachiro, Y.; Ohara, K.; Murakami, M. Clinical efficacy of Japanese herbal medicine daikenchuto in the management of fecal incontinence: A single-center, observational study. J. Anus. Rectum. Colon. 2019, 3, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Karim, S.; Adaikan, P. The effect of loperamide on prostaglandin induced diarrhea in rat and man. Prostaglandins 1977, 13, 321–331. [Google Scholar] [CrossRef]
- Uddin, S.J.; Shilpi, J.A.; Alam, S.M.; Alamgir, M.; Rahman, M.T.; Sarker, S.D. Antidiarrheal activity of the methanol extract of the barks of Xylocarpusmoluccensis in castor oil- and magnesium sulphate-induced diarrhea models in mice. J. Ethnopharmacol. 2005, 101, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, D.; Nathan, S.; Suresh, T.; Lakshmana Perumalsamy, P. Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J. Ethnopharmacol. 2001, 74, 217–220. [Google Scholar] [CrossRef]
- Jean B Patel. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Melvin P. Weinstein. National Committee for Clinical Laboratory Standards. In Performance Standards for Antimicrobial Disk Susceptibility Tests; Clinical & Laboratory Standards Institute: Wayne, PA, USA, 1995; p. 15. [Google Scholar]
- Karima, S.; Farida, S.; Mihoub, Z.M. Antimicrobial activity of an Algerian medicinal plant: Carthamus caeruleus L. Pharmacogn. Commun. 2013, 3. [Google Scholar] [CrossRef]
- Mothana, R.A.; Abdo, S.A.; Hasson, S.; Althawab, F.M.; Alaghbari, S.A.; Lindequist, U. Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yemeni medicinal plants. Evid. Based Complement. Alternat. Med. 2010, 7, 323–330. [Google Scholar] [CrossRef]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Beshbishy, A.M.; Batiha, G.E.; Yokoyama, N.; Igarashi, I. Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo. Parasit Vectors. 2019, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- Rode, M.S.; Kalaskar, M.G.; Gond, N.Y.; Surana, S.J. Evaluation of Antidiarrheal activity of diospyros malabarica bark extract. Bangladesh. J. Pharmaco. 2013, 8, 49–53. [Google Scholar]
- Yacob, T.; Shibeshi, W.; Nedi, T. Antidiarrheal activity of 80% methanol extract of the aerial part of Ajuga remota Benth (Lamiaceae) in mice. BMC Complement. Altern. Med. 2016, 16, 303. [Google Scholar] [CrossRef] [Green Version]
- Ammon, H.; Soergel, K. Diarrhea in Bockus Gastroenterology, 4th ed.; Saunders: Philadelphia, PA, USA, 1985; pp. 125–141. [Google Scholar]
- Ukwuani, A.N.; Salihu, S.; Anyanwu, F.C.; Yanah, Y.M.; Samuel, R.A. Antidiarrheal activity of aqueous leaves extract of Vitexdoniana. Int. J. Toxi. Pharmacol. Res. 2012, 4, 40–44. [Google Scholar]
- Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and Antibacterial Properties of Anthocyanins and Flavonols from Fruits of Black and Non-Black Mulberries. Molecules 2017, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Tang, Y.; Li, S.; Duan, J.A. Chemical and biological properties of quinochalcone C-glycosides from the florets of Carthamus tinctorius. Molecules 2013, 18, 15220–15254. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Lee, Y.J.; Kim, J.D.; Kang, S.N.; Lee, S.K.; Jang, J.Y.; Lee, H.K.; Lim, J.H.; Lee, O.H. Phenolic composition, antioxidant activity and anti-adipogenic effect of hot water extract from safflower (Carthamus tinctorius L.) seed. Nutrients 2013, 5, 4894–4907. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.; Mukhtar, F.; Danish, M. Cuscuta reflexa and Carthamus Oxyacantha: Potent sources of alternative and complimentary drug. Springer Plus 2015, 4, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batiha, G.E.S.; Magdy Beshbishy, A.; Adeyemi, O.S.; Nadwa, E.H.; Alkazmi, L.M.; Elkelish, A.A.; Igarashi, I. Phytochemical screening and antiprotozoal effects of the methanolic Berberis vulgaris and acetonic Rhus coriaria extracts. Molecules 2020, 25, 550. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.E.S.; Beshbishy, A.M.; Guswanto, A.; Nugraha, A.; Munkhjargal, T.; Abdel-Daim, M.; Mosqueda, J.; Igarashi, I. Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites in Vitro and in Vivo. Molecules 2020, 25, 996. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.E.S.; Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick-Borne Dis. 2019, 10, 949–958. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Obeme-Imom, J.I.; Akpor, B.O.; Rotimi, D.; Batiha, G.E.S.; Owolabi, A. Altered redox status, DNA damage and modulation of L-tryptophan metabolism contribute to antimicrobial action of curcumin. Heliyon 2020, 6, e03495. [Google Scholar] [CrossRef]
Observation | Control | 2000 mg/kg (b.w) |
---|---|---|
Digestion | N/O | N/O |
Bodyweight | N | N/C |
Itching | N | O |
Food intake | N | N |
Skin | N/E | N/E |
Laziness | N/P | P |
Sedation | N/E | O |
Diarrhea | N/P | N/P |
General physique | N | Lethargy |
Coma | N/P | N/P |
Eye color | N/E | N/E |
Death | Alive | Alive |
Group | Dose (mg/kg (B.w)) | Mean ± SE | % of Inhibition | |
---|---|---|---|---|
Latency | Defecation | |||
Normal Control | 10 mL/kg | 0.50 ± 0.45 | 9.33 ± 1.45 | - |
Carthamus oxycantha | 200 | 1.75 ± 0.20 | 7.33 ± 1.76 * | 21.43 |
Carthamus oxycantha | 400 | 2.10 ± 0.50 | 5.20 ± 1.15 ** | 44.26 |
Standard (Loperamide) | 50 | 3.47 ± 1.20 | 3.66 ± 0.66 *** | 60.77 |
Group | Dose (mg/kg (b.w)) | Mean ± SEM | % of Inhibition | |
---|---|---|---|---|
Latency | Defecation | |||
Normal control | 10 mL/kg | 0.75 ± 0.10 | 11.0 ± 1.0 | - |
Carthamus oxycantha | 200 | 2.20 ± 0.16 | 7.66 ± 0.33 * | 30.36 |
Carthamus oxycantha | 400 | 2.81 ± 0.19 | 6.00 ± 0.57 ** | 45.45 |
Standard (Loperamide) | 50 | 3.41 ± 0.25 | 4.20 ± 0.33 *** | 61.81 |
Microorganism | Interpretation of Doxycycline Zone Diameters (mm) | ZOI (mm) for the Standard Antibiotic (Doxycycline) | ZOI (mm) for the Methanolic Extract of C. oxycantha | Fold Change between the Doxycycline and C. oxycantha Zone of Inhibition | % Age Yield ZOI | ||
---|---|---|---|---|---|---|---|
R ≤ | I | S ≥ | |||||
Staphylococcus aureus | 12 | 13–15 | 16 | 20.25 ± 0.420(S) | 15.0 ± 0.500(S) | 0.35 | 74.07% |
Escherichia coli | 10 | 11–13 | 14 | 17.50 ± 0.500(S) | 11.6 ± 0.208(S) | 0.5 | 66.28% |
Salmonella typhi | 10 | 11–13 | 14 | 20.50 ± 0.688(S) | 13.0 ± 0.866(S) | 0.57 | 63.41% |
Pseudomonas aeruginosa | NA | NA | NA | 15.75 ± 0.500 | 10.5 ± 0.500(S) | 66.6% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikram, M.; Magdy Beshbishy, A.; Kifayatullah, M.; Olukanni, A.; Zahoor, M.; Naeem, M.; Amin, M.; Shah, M.; Abdelaziz, A.S.; Ullah, R.; et al. Chemotherapeutic Potential of Carthamus Oxycantha Root Extract as Antidiarrheal and In Vitro Antibacterial Activities. Antibiotics 2020, 9, 226. https://doi.org/10.3390/antibiotics9050226
Ikram M, Magdy Beshbishy A, Kifayatullah M, Olukanni A, Zahoor M, Naeem M, Amin M, Shah M, Abdelaziz AS, Ullah R, et al. Chemotherapeutic Potential of Carthamus Oxycantha Root Extract as Antidiarrheal and In Vitro Antibacterial Activities. Antibiotics. 2020; 9(5):226. https://doi.org/10.3390/antibiotics9050226
Chicago/Turabian StyleIkram, Muhammad, Amany Magdy Beshbishy, Muhammad Kifayatullah, Adedayo Olukanni, Muhammad Zahoor, Muhammad Naeem, Muhammad Amin, Masood Shah, Ahmed S. Abdelaziz, Riaz Ullah, and et al. 2020. "Chemotherapeutic Potential of Carthamus Oxycantha Root Extract as Antidiarrheal and In Vitro Antibacterial Activities" Antibiotics 9, no. 5: 226. https://doi.org/10.3390/antibiotics9050226
APA StyleIkram, M., Magdy Beshbishy, A., Kifayatullah, M., Olukanni, A., Zahoor, M., Naeem, M., Amin, M., Shah, M., Abdelaziz, A. S., Ullah, R., Mothana, R. A., Siddiqui, N. A., & Batiha, G. E. -S. (2020). Chemotherapeutic Potential of Carthamus Oxycantha Root Extract as Antidiarrheal and In Vitro Antibacterial Activities. Antibiotics, 9(5), 226. https://doi.org/10.3390/antibiotics9050226