Paclitaxel, Imatinib and 5-Fluorouracil Increase the Unbound Fraction of Flucloxacillin In Vitro
Abstract
:1. Introduction
2. Results
2.1. Determination of Protein Binding of FLU
2.2. Interaction between 5-FU, PAC, IMA and FLU in Pooled Plasma
2.2.1. Interactions between FLU and PAC
2.2.2. Interaction between FLU and IMA
2.2.3. Interaction between FLU and 5-FU
2.2.4. Interactions of FLU with Warfarin and Diazepam in Pooled Plasma
2.3. Binding of FLU to HSA and AGP
2.3.1. Binding of FLU to HSA at Physiological Levels
2.3.2. Interactions between FLU and PAC, IMA and 5-FU at Physiological Levels of HSA
2.3.3. Binding of FLU to AGP at Physiological Levels
2.4. Interactions between FLU and IMA
2.5. Binding of FLU to HSA at Pathophysiological Levels
2.5.1. Interactions between FLU and PAC, IMA, and 5-FU at Pathophysiological Levels of HSA
2.5.2. Binding of FLU to Pathophysiological Levels of AGP
2.5.3. Interactions between FLU and IMA at Pathophysiological Levels of AGP
3. Discussion
4. Materials and Methods
4.1. Standards and Reagents
4.2. Preparations of Stock Solutions, Standards, and Quality Control Samples
4.3. FLU Determination by LC-MS/MS
4.4. Sample Preparation for Total and Unbound FLU
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rimac, H.; Debeljak, Ž.; Bojić, M.; Miller, L. Displacement of Drugs from Human Serum Albumin: From Molecular Interactions to Clinical Significance. Curr. Med. Chem. 2017, 24, 1930–1947. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Roberts, J.A.; Lipman, J. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med. 2013, 39, 2070–2082. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buajordet, I.; Ebbesen, J.; Erikssen, J.; Brørs, O.; Hilberg, T. Fatal adverse drug events: The paradox of drug treatment. J. Intern. Med. 2001, 250, 327–341. [Google Scholar] [CrossRef]
- El-Najjar, N.; Jantsch, J.; Gessner, A. The use of liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring of antibiotics in cancer patients. Clin. Chem. Lab. Med. 2017, 55, 1246–1261. [Google Scholar] [CrossRef] [Green Version]
- Poulikakos, P.; Tsispara, A.; Vartzeli, P.; Zakka, M. Critically ill cancer patients with influenza (H1N1) infection in the intensive care unit in Greece. Acta Oncol. 2015, 54, 1081–1082. [Google Scholar] [CrossRef]
- van Leeuwen, R.W.F.; Brundel, D.H.S.; Neef, C.; van Gelder, T.; Mathijssen, R.H.J.; Burger, D.M.; Jansman, F.G.A. Prevalence of potential drug–drug interactions in cancer patients treated with oral anticancer drugs. Br. J. Cancer 2013, 108, 1071. [Google Scholar] [CrossRef] [Green Version]
- Felici, A.; Verweij, J.; Sparreboom, A. Dosing strategies for anticancer drugs: The good, the bad and body-surface area. Eur. J. Cancer 2002, 38, 1677–1684. [Google Scholar] [CrossRef]
- Jarfaut, A.; Santucci, R.; Levêque, D.; Herbrecht, R. Severe methotrexate toxicity due to a concomitant administration of ciprofloxacin. Méd. Mal. Infect. 2013, 43, 39–41. [Google Scholar] [CrossRef]
- Dalle, J.-H.; Auvrignon, A.; Vassal, G.; Leverger, G. Interaction Between Methotrexate and Ciprofloxacin. J. Pediatr. Hematol./Oncol. 2002, 24. [Google Scholar] [CrossRef]
- Nierenberg, D.W.; Mamelok, R.D. Toxic Reaction to Methotrexate in a Patient Receiving Penicillin and Furosemide: A Possible Interaction. DERM 1983, 119, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Preclinical Pharmacokinetics: An Approach Towards Safer and Efficacious Drugs. CDM 2006, 7, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Roberts, J.A.; Wallis, S.C.; Rello, J.; Lipman, J. Flucloxacillin dosing in critically ill patients with hypoalbuminaemia: Special emphasis on unbound pharmacokinetics. J. Antimicrob. Chemother. 2010, 65, 1771–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, G.; Brinkman, A.; Benefield, R.J.; Carlier, M.; de Waele, J.J.; El Helali, N.; Frey, O.; Harbarth, S.; Huttner, A.; McWhinney, B.; et al. An international, multicentre survey of β-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J. Antimicrob. Chemother. 2014, 69, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- Kremer, J.M.; Wilting, J.; Janssen, L.H. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol. Rev. 1988, 40, 1. [Google Scholar]
- Jenkins, R.E.; Meng, X.; Elliott, V.L.; Kitteringham, N.R.; Pirmohamed, M.; Park, B.K. Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Prot. Clin. Appl. 2009, 3, 720–729. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef]
- Roberts, J.A.; Pea, F.; Lipman, J. The Clinical Relevance of Plasma Protein Binding Changes. Clin. Pharmacokinet. 2013, 52, 1–8. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; McDonald, C.; McWhinney, B.; Ungerer, J.P.J.; Lipman, J.; Roberts, J.A. Low flucloxacillin concentrations in a patient with central nervous system infection: The need for plasma and cerebrospinal fluid drug monitoring in the ICU. Ann. Pharm. 2014, 48, 1380–1384. [Google Scholar] [CrossRef]
- Landersdorfer, C.B.; Kirkpatrick, C.M.J.; Kinzig-Schippers, M.; Bulitta, J.B.; Holzgrabe, U.; Drusano, G.L.; Sörgel, F. Population pharmacokinetics at two dose levels and pharmacodynamic profiling of flucloxacillin. Antimicrob. Agents Chemother. 2007, 51, 3290–3297. [Google Scholar] [CrossRef] [Green Version]
- de Weger, V.A.; Beijnen, J.H.; Schellens, J.H.M. Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel--a review. Anti-Cancer Drugs 2014, 25, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Regenthal, R.; Krueger, M.; Koeppel, C.; Preiss, R. Drug Levels: Therapeutic and Toxic Serum/Plasma Concentrations of Common Drugs. J. Clin. Monit. Comput. 1999, 15, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.M.; Wojnicz, A.; Steegman, J.L.; Cano-Abad, M.F.; Ruiz-Nuño, A. Imatinib assay by high-performance liquid chromatography in tandem mass spectrometry with solid-phase extraction in human plasma. Biomed. Chromatogr. 2013, 27, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Rezende, V.M.; Rivellis, A.; Novaes, M.M.Y.; de Alencar Fisher Chamone, D.; Bendit, I. Quantification of imatinib in human serum: Validation of a high-performance liquid chromatography-mass spectrometry method for therapeutic drug monitoring and pharmacokinetic assays. Drug Des. Devel. 2013, 7, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Alanazi, F.K.; Yassin, A.E.; El-Badry, M.; Mowafy, H.A.; Alsarra, I.A. Validated high-performance liquid chromatographic technique for determination of 5-fluorouracil: Applications to stability studies and simulated colonic media. J. Chromatogr. Sci. 2009, 47, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Alsarra, I.A.; Alarifi, M.N. Validated liquid chromatographic determination of 5-fluorouracil in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 804, 435–439. [Google Scholar] [CrossRef]
- Huang, Z.; Ung, T. Effect of Alpha-1-Acid Glycoprotein Binding on Pharmacokinetics and Pharmacodynamics. CDM 2013, 14, 226–238. [Google Scholar]
- Moser, A.C.; Kingsbury, C.; Hage, D.S. Stability of warfarin solutions for drug-protein binding measurements: Spectroscopic and chromatographic studies. J. Pharm. Biomed. Anal. 2006, 41, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Dufour, C.; Dangles, O. Flavonoid-serum albumin complexation: Determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta 2005, 1721, 164–173. [Google Scholar] [CrossRef]
- Kwon, M.-J.; Kim, H.-J.; Kim, J.-W.; Lee, K.-H.; Sohn, K.-H.; Cho, H.-J.; On, Y.-K.; Kim, J.-S.; Lee, S.-Y. Determination of plasma warfarin concentrations in Korean patients and its potential for clinical application. Korean J. Lab. Med. 2009, 29, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Greenblatt, D.J.; Laughren, T.P.; Allen, M.D.; Harmatz, J.S.; Shader, R.I. Plasma diazepam and desmethyldiazepam concentrations during long-term diazepam therapy. Br. J. Clin. Pharm. 1981, 11, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, M.; Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharm.-Int. J. Pharm. Sci. 2003, 58, 447–474. [Google Scholar]
- Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Ascenzi, P.; Bocedi, A.; Notari, S.; Fanali, G.; Fesce, R.; Fasano, M. Allosteric Modulation of Drug Binding to Human Serum Albumin. MRMC 2006, 6, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Ascenzi, P.; Fanali, G.; Fasano, M.; Pallottini, V.; Trezza, V. Clinical relevance of drug binding to plasma proteins. J. Mol. Struct. 2014, 1077, 4–13. [Google Scholar] [CrossRef]
- Zeitlinger, M.A.; Derendorf, H.; Mouton, J.W.; Cars, O.; Craig, W.A.; Andes, D.; Theuretzbacher, U. Protein binding: Do we ever learn? Antimicrob. Agents Chemother. 2011, 55, 3067–3074. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, C. Antibiotic dosing in critical illness. J. Antimicrob. Chemother. 2011, 66, ii25–ii31. [Google Scholar] [CrossRef]
- Wong, G.; Briscoe, S.; Adnan, S.; McWhinney, B.; Ungerer, J.; Lipman, J.; Roberts, J.A. Protein Binding of β-Lactam Antibiotics in Critically Ill Patients: Can We Successfully Predict Unbound Concentrations? Antimicrob. Agents Chemother. 2013, 57, 6165. [Google Scholar] [CrossRef] [Green Version]
- Fairley, C.K.; McNeil, J.J.; Desmond, P.; Smallwood, R.; Young, H.; Forbes, A.; Purcell, P.; Boyd, I. Risk factors for development of flucloxacillin associated jaundice. BMJ 1993, 306, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Ascenzi, P.; Bocedi, A.; Bolli, A.; Fasano, M.; Notari, S.; Polticelli, F. Allosteric modulation of monomeric proteins*. Biochem. Mol. Biol. Educ. 2005, 33, 169–176. [Google Scholar] [CrossRef]
- Seedher, N.; Agarwal, P. Interaction of some isoxazolyl penicillins with human serum albumin. J. Biol. Sci. 2006, 6, 167–172. [Google Scholar]
- Bolhuis, M.S.; Panday, P.N.; Pranger, A.D.; Kosterink, J.G.W.; Alffenaar, J.-W.C. Pharmacokinetic Drug Interactions of Antimicrobial Drugs: A Systematic Review on Oxazolidinones, Rifamycines, Macrolides, Fluoroquinolones, and Beta-Lactams. Pharmaceutics 2011, 3, 865–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landersdorfer, C.B.; Kirkpatrick, C.M.J.; Kinzig, M.; Bulitta, J.B.; Holzgrabe, U.; Sörgel, F. Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br. J. Clin. Pharm. 2008, 66, 648–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, B.; Larcombe, R.; Chaptini, C.; Gordon, D.L. Interaction between voriconazole and flucloxacillin during treatment of disseminated Scedosporium apiospermum infection. J. Antimicrob. Chemother. 2015, 70, 2171–2173. [Google Scholar] [CrossRef] [Green Version]
- Muilwijk, E.W.; Dekkers, B.G.J.; Henriet, S.S.V.; Verweij, P.E.; Witjes, B.; Lashof, A.M.L.O.; Groeneveld, G.H.; van der Hoeven, J.; Alffenaar, J.W.C.; Russel, F.G.M.; et al. Flucloxacillin Results in Suboptimal Plasma Voriconazole Concentrations. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Garzoni, C.; Uçkay, I.; Belaieff, W.; Breilh, D.; Suvà, D.; Huggler, E.; Lew, D.; Hoffmeyer, P.; Bernard, L. In vivo interactions of continuous flucloxacillin infusion and high-dose oral rifampicin in the serum of 15 patients with bone and soft tissue infections due to Staphylococcus aureus—A methodological and pilot study. Springer Plus 2014, 3, 287. [Google Scholar] [CrossRef] [Green Version]
- Janknegt, R. Drug interactions with quinolones. J. Antimicrob. Chemother. 1990, 26 (Suppl. D), 7–29. [Google Scholar] [CrossRef]
- Jessurun, N.T.; van Hunsel, F.; van Puijenbroek, E. Metabolic acidosis with a high anion: A drug-drug interaction between Paracetamol and Flucloxacillin. Clin. Ther. 2015, 37, e47. [Google Scholar] [CrossRef]
- Taccone, F.S.; Artigas, A.A.; Sprung, C.L.; Moreno, R.; Sakr, Y.; Vincent, J.-L. Characteristics and outcomes of cancer patients in European ICUs. Crit. Care 2009, 13, R15. [Google Scholar] [CrossRef] [Green Version]
- Mouzon, A.; Kerger, J.; D’Hondt, L.; Spinewine, A. Potential Interactions with Anticancer Agents: A Cross-Sectional Study. Chemotherapy 2013, 59, 85–92. [Google Scholar] [CrossRef]
- Sime, F.B.; Roberts, M.S.; Peake, S.L.; Lipman, J.; Roberts, J.A. Does Beta-lactam Pharmacokinetic Variability in Critically Ill Patients Justify Therapeutic Drug Monitoring? A Systematic Review. Ann. Intensive Care 2012, 2, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohbatake, Y.; Fushida, S.; Tsukada, T.; Kinoshita, J.; Oyama, K.; Hayashi, H.; Miyashita, T.; Tajima, H.; Takamura, H.; Ninomiya, I.; et al. Elevated alpha1-acid glycoprotein in gastric cancer patients inhibits the anticancer effects of paclitaxel, effects restored by co-administration of erythromycin. Clin. Exp. Med. 2016, 16, 585–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trynda-Lemiesz, L. Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorganic Med. Chem. 2004, 12, 3269–3275. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Lloyd, P.; Schran, H. Clinical Pharmacokinetics of Imatinib. Clin. Pharmacokinet. 2005, 44, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Beumer, J.H.; Pillai, V.C.; Parise, R.A.; Christner, S.M.; Kiesel, B.F.; Rudek, M.A.; Venkataramanan, R. Human hepatocyte assessment of imatinib drug–drug interactions—Complexities in clinical translation. Br. J. Clin. Pharm. 2015, 80. [Google Scholar] [CrossRef] [Green Version]
- Di Muzio, E.; Polticelli, F.; Trezza, V.; Fanali, G.; Fasano, M.; Ascenzi, P. Imatinib binding to human serum albumin modulates heme association and reactivity. Arch. Biochem. Biophys. 2014, 560, 100–112. [Google Scholar] [CrossRef]
- Fitos, I.; Visy, J.; Zsila, F.; Mády, G.; Simonyi, M. Selective binding of imatinib to the genetic variants of human α1-acid glycoprotein. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2006, 1760, 1704–1712. [Google Scholar] [CrossRef]
- Diasio, R.B.; Harris, B.E. Clinical Pharmacology of 5-Fluorouracil. Clin. Pharmacokinet. 1989, 16, 215–237. [Google Scholar] [CrossRef]
- Sułkowska, A.; Równicka, J.; Bojko, B.; Sułkowski, W. Interaction of anticancer drugs with human and bovine serum albumin. J. Mol. Struct. 2003, 651, 133–140. [Google Scholar] [CrossRef]
- Nix, D.E.; Matthias, K.R.; Ferguson, E.C. Effect of ertapenem protein binding on killing of bacteria. Antimicrob. Agents Chemother. 2004, 48, 3419–3424. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Röck, K.; Sahre, M.; Burkhardt, O.; Brunner, M.; Lobmeyer, M.T.; Derendorf, H. Effect of protein binding on the pharmacological activity of highly bound antibiotics. Antimicrob. Agents Chemother. 2008, 52, 3994–4000. [Google Scholar] [CrossRef] [Green Version]
- Beer, J.; Wagner, C.C.; Zeitlinger, M. Protein Binding of Antimicrobials: Methods for Quantification and for Investigation of its Impact on Bacterial Killing. AAPS J. 2009, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drug Bank. 5-Fluorouracil. Available online: https://www.drugbank.ca/drugs/DB00544 (accessed on 10 August 2019).
- Petitpas, I.; Bhattacharya, A.A.; Twine, S.; East, M.; Curry, S. Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. J. Biol. Chem. 2001, 276, 22804–22809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drug Bank. Diazepam. Available online: https://www.drugbank.ca/drugs/DB00829 (accessed on 10 August 2019).
- Tabish Rehman, M.; U Khan, A. Understanding the interaction between human serum albumin and anti-bacterial/anti-cancer compounds. Curr. Pharm. Des. 2015, 21, 1785–1799. [Google Scholar] [CrossRef] [PubMed]
- Chinnathambi, S. Underlying the Mechanism of 5-Fluorouracil and Human Serum Albumin Interaction: A Biophysical Study. J. Phys. Chem. Biophys. 2016, 6. [Google Scholar] [CrossRef]
- Bun, S.S.; Ciccolini, J.; Bun, H.; Aubert, C.; Catalin, J. Drug interactions of paclitaxel metabolism in human liver microsomes. J. Chemother. 2003, 15, 266–274. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, R.W.F.; van Gelder, T.; Mathijssen, R.H.J.; Jansman, F.G.A. Drug–drug interactions with tyrosine-kinase inhibitors: A clinical perspective. Lancet Oncol. 2014, 15, 315–326. [Google Scholar] [CrossRef]
- Gambacorti-Passerini, C.; Zucchetti, M.; Russo, D.; Frapolli, R.; Verga, M.; Bungaro, S.; Tornaghi, L.; Rossi, F.; Pioltelli, P.; Pogliani, E.; et al. α1 Acid Glycoprotein Binds to Imatinib (STI571) and Substantially Alters Its Pharmacokinetics in Chronic Myeloid Leukemia Patients. Clin. Cancer Res. 2003, 9, 625. [Google Scholar]
- Diasio, R.B. Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br. J. Clin. Pharm. 1998, 46, 1–4. [Google Scholar] [CrossRef] [Green Version]
- McLeod, H.L. Clinically relevant drug-drug interactions in oncology. Br. J. Clin. Pharm. 1998, 45, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Vanstraelen, K.; Wauters, J.; Vercammen, I.; de Loor, H.; Maertens, J.; Lagrou, K.; Annaert, P.; Spriet, I. Impact of hypoalbuminemia on voriconazole pharmacokinetics in critically ill adult patients. Antimicrob. Agents Chemother. 2014, 58, 6782–6789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Najjar, N.; Hösl, J.; Holzmann, T.; Jantsch, J.; Gessner, A. UPLC-MS/MS method for therapeutic drug monitoring of 10 antibiotics used in intensive care units. Drug Test. Anal. 2018, 10, 584–591. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds Flucloxacillin, Paclitaxel, Imatinib, 5-Fluorouracil, Warfarin and Diazepam are available from the authors. |
Sample | AB Conc (µg/mL) | AC Conc (µg/mL) | Measured Total Conc in Plasma (µg/mL) | %CV | Measured Unbound Conc in Plasma (µg/mL) | %CV | %Unbound |
---|---|---|---|---|---|---|---|
FLU alone FLU alone | 0.2 20 | - - | 0.24 21.76 | 2.03 4.50 | 0.0016 0.1275 | 4.83 10.15 | 0.66 0.59 |
FLU + PAC FLU + PAC | 0.2 0.2 | 0.2 2.0 | 0.0023 0.0030 | 3.64 2.87 | 0.96 *** 1.21 *** | ||
FLU + PAC FLU + PAC FLU + PAC FLU + PAC | 20 20 20 20 | 0.2 0.6 1.0 2.0 | 0.2211 0.2598 0.2609 0.2641 | 7.17 4.00 3.35 4.56 | 1.02 *** 1.19 *** 1.20 *** 1.21 *** |
Sample | AB Conc (µg/mL) | AC Conc (µg/mL) | Measured Total Conc in Plasma (µg/mL) | %CV | Measured Unbound Conc in Plasma (µg/mL) | %CV | %Unbound |
---|---|---|---|---|---|---|---|
FLU alone FLU alone | 0.2 20 | - - | 0.23 21.18 | 2.7 11.3 | 0.0016 0.21 | 12.83 6.64 | 0.7 0.98 |
FLU + IMA FLU + IMA | 0.2 0.2 | 0.2 2.0 | 0.0021 0.0023 | 7.69 6.61 | 0.89 * 1.0 ** | ||
FLU + IMA FLU + IMA FLU + IMA FLU + IMA | 20 20 20 20 | 0.2 0.6 1.0 2.0 | 0.26 0.27 0.30 0.31 | 4.89 6.45 11.57 4.55 | 1.22 *** 1.27 *** 1.41 ** 1.47 *** |
Sample | AB Conc. (µg/mL) | AC Conc. (µg/mL) | Measured Total Conc. in Plasma (µg/mL) | %CV | Measured Unbound Conc. in Plasma (µg/mL) | %CV | %Unbound |
---|---|---|---|---|---|---|---|
FLU alone FLU alone | 0.2 20 | - - | 0.28 23.09 | 7.48 2.84 | 0.0023 0.1766 | 5.23 9.57 | 0.78 0.76 |
FLU + 5-FU FLU + 5-FU | 0.2 0.2 | 0.2 2.0 | 0.0025 0.0026 | 4.54 1.68 | 0.88 ** 0.91 ** | ||
FLU + 5-FU FLU + 5-FU FLU + 5-FU FLU + 5-FU | 20 20 20 20 | 0.2 0.6 1.0 2.0 | 0.1777 0.1832 0.1871 0.2026 | 11.6 10.1 3.00 1.60 | 0.77 0.79 0.81 0.88 * |
Sample | AB Conc (µg/mL) | Drug Conc (µg/mL) | Measured Total Conc in Plasma (µg/mL) | %CV | Measured Unbound conc in Plasma (µg/mL) | %CV | % Unb | % Diff |
---|---|---|---|---|---|---|---|---|
FLU alone | 20 | 20.722 | 2.03 | 0.152 | 10.42 | 0.73 | ||
FLU + WAR | 20 | 1.0 | 0.173 | 5.91 | 0.84 | 14.37 * | ||
FLU + DIA | 20 | 1.0 | 0.182 | 12.01 | 0.88 | 20.04 * |
Sample | AB Conc (µg/mL) | AC Conc (µg/mL) | Total Conc (µg/mL) | %CV | Unb Conc (µg/mL) | %CV | % Unb | % Diff |
---|---|---|---|---|---|---|---|---|
FLU alone FLU alone | 0.2 20 | 0.25 19.03 | 10.44 3.54 | 0.002 0.173 | 3.37 7.68 | 0.84 0.91 | ||
FLU in HSA (40 g/L) FLU in HSA (40 g/L) | 0.2 20 | 0.197 16.04 | 4.78 5.96 | 0.011 0.966 | 8.97 5.50 | 5.61 6.02 | ||
FLU in HSA (25 g/L) FLU in HSA (25 g/L) | 0.2 20 | 0.232 18.214 | 6.37 3.15 | 0.012 1.182 | 14.75 3.53 | 5.09 6.51 | ||
FLU in HSA (40 g/L) +PAC FLU in HSA (40 g/L) +PAC | 0.2 20 | 1.0 1.0 | 0.20 16.04 | 3.78 6.73 | 0.013 1.102 | 11.45 3.93 | 6.59 6.87 | 16.84 * 14.04 *** |
FLU in HSA (40 g/L) +IMA FLU in HSA (40 g/L) +IMA | 0.2 20 | 1.0 1.0 | 0.20 16.04 | 3.78 6.73 | 0.0132 1.1426 | 2.96 4.30 | 6.81 7.12 | 20.91 ** 18.21 *** |
FLU in HSA (40 g/L) +5-FU FLU in HSA (40 g/L) +5-FU | 0.2 20 | 1.0 1.0 | 0.20 16.04 | 3.78 6.73 | 0.011 1.057 | 3.41 5.20 | 5.46 6.59 | 3.19 9.32 * |
FLU in HSA (25 g/L) +PAC FLU in HSA (25 g/L) +PAC | 0.2 20 | 1.0 1.0 | 0.22 18.47 | 4.17 1.07 | 0.016 1.341 | 4.94 1.02 | 7.18 7.26 | 41.62 *** 11.59 *** |
FLU in HSA (25 g/L) +IMA FLU in HSA (25 g/L) +IMA | 0.2 20 | 1.0 1.0 | 0.244 17.880 | 2.42 4.47 | 0.0153 1.3930 | 2.56 4.28 | 6.27 7.79 | 23.64 *** 19.71 *** |
FLU in HSA (25 g/L) +5-FU FLU in HSA (25 g/L) +5-FU | 0.2 20 | 1.0 1.0 | 0.22 18.47 | 4.17 1.07 | 0.012 1.229 | 4.23 2.89 | 5.64 6.66 | 11.18 * 2.26 |
Sample | AB Conc (µg/mL) | AC Conc (µg/mL) | Total conc (µg/mL) | %CV | Unb Conc (µg/mL) | %CV | % Unb | % Diff |
---|---|---|---|---|---|---|---|---|
FLU in AGP (0.9 g/L) FLU in AGP (0.9 g/L) | 0.2 20 | 0.261 21.060 | 1.17 6.01 | 0.1019 4.6563 | 3.47 1.42 | 39.08 22.11 | ||
FLU in AGP (2.5 g/L) FLU in AGP (2.5 g/L) | 0.2 20 | 0.266 20.745 | 4.60 4.50 | 0.0852 4.2773 | 3.90 2.07 | 32.04 20.62 | ||
FLU in AGP (0.9 g/L) + IMA FLU in AGP (0.9 g/L) + IMA | 0.2 20 | 1.0 1.0 | 0.261 21.060 | 1.17 6.01 | 0.1243 4.7695 | 3.23 1.37 | 47.69 22.65 | 22.05 *** 2.43 * |
FLU in AGP (2.5 g/L) + IMA FLU in AGP (2.5 g/L) + IMA | 0.2 20 | 1.0 1.0 | 0.266 20.745 | 4.60 4.50 | 0.1078 4.4688 | 5.36 2.50 | 40.55 21.54 | 26.56 * 4.47 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolte, M.; Ali, W.; Jänis, J.; Gessner, A.; El-Najjar, N. Paclitaxel, Imatinib and 5-Fluorouracil Increase the Unbound Fraction of Flucloxacillin In Vitro. Antibiotics 2020, 9, 309. https://doi.org/10.3390/antibiotics9060309
Stolte M, Ali W, Jänis J, Gessner A, El-Najjar N. Paclitaxel, Imatinib and 5-Fluorouracil Increase the Unbound Fraction of Flucloxacillin In Vitro. Antibiotics. 2020; 9(6):309. https://doi.org/10.3390/antibiotics9060309
Chicago/Turabian StyleStolte, Maximilian, Weaam Ali, Janne Jänis, Andre’ Gessner, and Nahed El-Najjar. 2020. "Paclitaxel, Imatinib and 5-Fluorouracil Increase the Unbound Fraction of Flucloxacillin In Vitro" Antibiotics 9, no. 6: 309. https://doi.org/10.3390/antibiotics9060309
APA StyleStolte, M., Ali, W., Jänis, J., Gessner, A., & El-Najjar, N. (2020). Paclitaxel, Imatinib and 5-Fluorouracil Increase the Unbound Fraction of Flucloxacillin In Vitro. Antibiotics, 9(6), 309. https://doi.org/10.3390/antibiotics9060309