In Vitro Evaluation of the Antimicrobial and Immunomodulatory Activity of Culinary Herb Essential Oils as Potential Perioceutics
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition
2.2. Antimicrobial Activity
2.3. Evaluation of the EO Effects on Bacterial Cells by Flow Cytometry
2.4. Immunomodulatory Activity of the Tested EOs
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Extraction
4.3. Chemical Characterization
4.4. Antimicrobial Activity
4.5. Antibiofilm Activity Testing
4.6. Evaluation of the EO Effects on Bacterial Cells by Flow Cytometry
4.7. Evaluation of the Immunomodulatory Activity
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bodeker, C.; Bodeker, G.; Ong, C.K.; Grundy, C.K.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- CDC. Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
- Bassolé, I.H.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Teles, R.; Wang, C.Y. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis. 2011, 17, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Bascones-Martinez, A.; Matesanz-Perez, P.; Escribano-Bermejo, M.; González-Moles, M.Á.; Bascones-Ilundain, J.; Meurman, J.H. Periodontal disease and diabetes-Review of the Literature. Med. Oral Patol. Oral Cir. Bucal 2011, 16, e722–e729. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.; Pramod, K.; Tahir, M.A.; Ansari, S.H. Autoimmune responses in periodontal diseases. Autoimmun. Rev. 2011, 10, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Abnet, C.C.; Qiao, Y.L.; Mark, S.D.; Dong, Z.W.; Taylor, P.R.; Dawsey, S.M. Prospective study of tooth loss and incident esophageal and gastric cancers in China. Cancer Causes Control 2001, 12, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Hujoel, P.P.; Drangsholt, M.; Spiekerman, C.; Weiss, N.S. An exploration of the periodontitis–cancer association. Ann. Epidemiol. 2003, 13, 312–316. [Google Scholar] [CrossRef]
- Stolzenberg-Solomon, R.Z.; Dodd, K.W.; Blaser, M.J.; Virtamo, J.; Taylor, P.R.; Albanes, D. Tooth loss, pancreatic cancer, and Helicobacter pylori. Am. J. Clin. Nutr. 2003, 78, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hemme, C.; Beleno, J.; Shi, Z.J.; Ning, D.; Qin, Y.; Tu, Q.; Jorgensen, M.; He, Z.; Wu, L.; et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. 2018, 12, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Rosier, B.T.; De Jager, M.; Zaura, E.; Krom, B.P. Historical and contemporary hypotheses on the development of oral diseases: Are we there yet? Front. Cell. Infect. Microbiol. 2014, 4, 92. [Google Scholar] [CrossRef] [Green Version]
- Shaddox, L.M.; Walker, C.B. Treating chronic periodontitis: Current status, challenges, and future directions. Clin. Cosmet. Investig. Dent. 2010, 2, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Zhang, X.; Zhu, C.L.; He, Z.Y.; Liang, J.P.; Song, Z.C. Melatonin receptor agonists as the “perioceutics” agents for periodontal disease through modulation of porphyromonas gingivalis virulence and inflammatory response. PLoS ONE 2016, 11, e0166442. [Google Scholar] [CrossRef] [Green Version]
- Mittal, R.P.; Rana, A.; Jaitak, V. Essential oils: An impending substitute of synthetic antimicrobial agents to overcome antimicrobial resistance. Curr. Drug Targets 2019, 20, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Delcaru, C.; Alexandru, I.; Podgoreanu, P.; Grosu, M.; Stavropoulos, E.; Chifiriuc, M.C.; Lazar, V. Microbial biofilms in urinary tract infections and prostatitis: Etiology, pathogenicity, and combating strategies. Pathogens 2016, 5, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagli, N.; Dagli, R.; Mahmoud, R.S.; Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran. J. Microbiol. 2011, 3, 194–200. [Google Scholar] [PubMed]
- Yazdanpanah, L.; Mohamadi, N. Antifungal activity of Satureja hortensis L. essential oil against Alternaria citri. Eur. J. Exp. Biol. 2014, 4, 399–403. [Google Scholar]
- Sefidkon, F.; Abbasi, K.; Khaniki, G.B. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem. 2006, 99, 19–23. [Google Scholar] [CrossRef]
- Kazemi, M.; Abdossi, V. Chemical composition of the essential oils of Gnethum graveolens L. Bangladesh J. Bot. 2015, 44, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Rădulescu, V.; Popescu, M.L.; Ilieș, D.C. Chemical composition of the volatile oil from different plant parts of Anethum graveolens L. (Umbelliferae) cultivated in Romania. Farmacia 2010, 58, 594–600. [Google Scholar]
- Hammer, K.A.; Carson, C.F. Chemistry and bioactivity of essential oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 204–238. [Google Scholar]
- Yumoto, H.; Hirota, K.; Hirao, K.; Ninomiya, M.; Murakami, K.; Fujii, H.; Miyake, Y. The pathogenic factors from oral streptococci for systemic diseases. Int. J. Mol. Sci. 2019, 20, 4571. [Google Scholar] [CrossRef] [Green Version]
- Whittle, E.E.; Legood, S.W.; Alav, I.; Dulyayangkul, P.; Overton, T.W.; Blair, J.M.A. Flow cytometric analysis of efflux by dye accumulation. Front. Microbiol. 2019, 10, 2319. [Google Scholar] [CrossRef] [Green Version]
- Garvey, M.I.; Piddock, L.J. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob. Agents Chemother. 2008, 52, 1677–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Liu, J.; Ling, J. Efflux inhibitor suppresses Streptococcus mutans virulence properties. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [Green Version]
- Chanput, W.; Mesb, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014, 23, 38–40. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Safieh-Garabedian, B.; Poole, S.; Allchorne, A.; Winter, J.; Woolf, C.J. Contribution of interleukin-1 to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br. J. Pharm. 1995, 115, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Chifiriuc, M.C.; Mihăescu, G.; Lazăr, V. Microbiologie şi Virologie Medicală; Editura Universităţii din Bucureşti: București, Romania, 2011; pp. 388–393. [Google Scholar]
- Palombo, E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid.-Based Complementary Altern. Med. 2011, 2011, 680354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, K.A.; Carson, C.F. Antibacterial and antifungal activities of essential oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 256–293. [Google Scholar]
- Narayanan, N.; Thangavelu, L. Salvia officinalis in dentistry. Dent. Hypotheses 2015, 6, 27–30. [Google Scholar]
- Zeidán-Chuliá, F.; Keskin, M.; Könönen, E.; Uitto, V.J.; Söderling, E.; Moreira, J.C.; Gursoy, U.K. Antibacterial and antigelatinolytic effects of Satureja hortensis L. essential oil on epithelial cells exposed to Fusobacterium nucleatum. J. Med. Food 2015, 18, 503–506. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sharifi-Rad, M.; Hoseini-Alfatemi, S.M.; Iriti, M. Composition, cytotoxic and antimicrobial activities of satureja intermedia C.A.Mey essential oil. Int. J. Mol. Sci. 2015, 6, 17812–17825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zomorodian, K.; Ghadiri, P.; Saharkhiz, M.J.; Moein, M.R.; Mehriar, P.; Bahrani, F.; Golzar, T.; Pakshir, K.; Fani, M.M. Antimicrobial activity of seven essential oils from Iranian aromatic plants against common causes of oral infections. Jundishapur J. Microbiol. 2015, 8, e17766. [Google Scholar] [CrossRef] [Green Version]
- Zaura, E.; Keijser, B.J.; Huse, S.M.; Crielaard, W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, R.J., Jr.; Gordon, S.M.; Cisar, J.O.; Kolenbrander, P.E. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 2003, 185, 3400–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosan, B.; Lamont, R.J. Dental plaque formation. Microbes Infect. 2000, 2, 1599–1607. [Google Scholar] [CrossRef]
- Jenkinson, H.F.; Lamont, R.J. Oral microbial communities in sickness and in health. Trends Microbiol. 2005, 13, 589–595. [Google Scholar] [CrossRef]
- Gilbert, P.; Das, J.; Foley, I. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 1997, 11, 160–167. [Google Scholar] [CrossRef]
- Projan, S.J.; Youngman, P.J. Antimicrobials: New solutions badly needed. Curr. Opin. Microbiol. 2002, 5, 463–465. [Google Scholar] [CrossRef]
- Gao, M.; Teplitski, M.; Robin, J.B.; Bauer, W.D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant-Microbe Interact. 2003, 16, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Chaffanel, F.; Charron-Bourgoin, F.; Libante, V.; Leblond-Bourget, N.; Payot, S. Resistance genes and genetic elements associated with antibiotic resistance in clinical and commensal isolates of streptococcus salivarius. Appl. Environ. Microbiol. 2015, 81, 4155–4163. [Google Scholar] [CrossRef] [Green Version]
- Dahmane, N.; Libante, V.; Charron-Bourgoin, F.; Guedon, E.; Guedon, G.; Leblond-Bourget, N.; Payot, S. Diversity of integrative and conjugative elements of streptococcus salivarius and their intra- and interspecies transfer. Appl. Environ. Microbiol. 2017, 83, e00337-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Pharmacopoeia Commission. British Pharmacopoeia; The Stationery Office: London, UK, 2003; Appendix 9; Volume IV, p. A238. [Google Scholar]
- Radulescu, V.; Chiliment, S.; Oprea, E. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis. J. Chromatogr. A 2004, 1027, 121–126. [Google Scholar] [CrossRef]
- Bouari (Cuc), M.C.; Fit, N.; Răpuntean, S.; Nadas, G.; Gal, A.; Bolfa, P.; Taulescu, M.; Catoi, C. In vitro evaluation of the antimicrobial properties of some plant essential oils against clinical isolates of Prototheca spp. Rom. Biotechnol. Lett. 2011, 16, 6146–6152. [Google Scholar]
- Najee, H.; Kamerzan, C.; Marutescu, L.; Gheorghe, I.; Popa, M.; Gradisteanu, G.; Lazar, V. Antifungal activity of some medicinal plant extracts against Candida albicans nosocomial isolates. Rom. Biotechnol. Lett. 2018, 23, 14073–14076. [Google Scholar]
Bacterial Strain | β-pinene | Satureja hortensis EO | Anethum graveolens EO | Salvia officinalis EO | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBEC | MIC | MBEC | MIC | MBEC | MIC | MBEC | |
S 39.1 Enterococcus faecalis | 43.6 | - | 1.36 | 10.91 | 2.84 | - | 22.95 | - |
S 39.2 Enterococcus faecalis | 5.45 | 5.45 | 5.45 | 21.82 | 91 | - | 22.95 | 22.95 |
S 26.4 Enterococcus faecalis | 5.45 | 10.9 | 1.36 | 10.91 | 91 | - | 22.95 | - |
S 20.1 Aerococcus viridans | 10.9 | 43.6 | 0.68 | - | 91 | 22.75 | 45.9 | - |
S 26.3 Eubacterium lentum | 2.72 | 5.45 | 0.08 | 21.82 | 22.75 | - | 11.47 | - |
S 60.3 Pantoea spp. | 21.8 | 21.8 | 0.17 | 0.84 | 11.37 | 22.75 | 5.75 | 45.9 |
S41.3 Prevotella oralis | 0.68 | 0.68 | 0.68 | 10.91 | 1.42 | 2.84 | - | |
S 41.1 Actinomyces naeslundii | 5.45 | 5.45 | 1.36 | 10,91 | 45.5 | - | 22.95 | 22,5 |
S 41.2 Actinomyces naeslundii | 21.8 | 10.9 | 0.34 | 21.8 | 22.75 | 22.75 | 22.95 | 2,86 |
S 114 Actinomyces naeslundii | 5.45 | 10.9 | 2.72 | 0,68 | 22.75 | 22.75 | - | |
S 61.2 Gemella morbillorum | 5.45 | 21.8 | 1.36 | 21.8 | 22.75 | 22.75 | 11.47 | 45,9 |
S 60.1 Staphylococcus sciuri | 5.45 | 10.9 | 0.34 | 1.36 | 5.68 | - | 11.47 | 5.73 |
S 119 Staphylococcus xylosus | 5.45 | 21.8 | 2.72 | 2.72 | 45.5 | - | 45.9 | 45.9 |
S 42.1 Gemella morbillorum | 1.36 | 21.8 | 0.34 | - | 45.5 | 2,84 | 45.9 | - |
S 50 Pasteurella haemolytica | 10.9 | 10.9 | 0.68 | 5.45 | 45.5 | 11.37 | 22.95 | |
S 66 Pasteurella haemolytica | 21.8 | 21.8 | 1.36 | 21.8 | 91 | 22.75 | 22.95 | 45.9 |
S 65 Micrococcus sp. | 10.9 | 10.9 | 10.91 | 10.91 | 22.75 | - | 45.9 | - |
S 71 Fusobacterium mortiferum | 10.9 | 10.9 | 0.68 | 0,68 | 5.68 | 5,68 | 22.95 | 22.95 |
S 51 Gemella morbillorum | 5.45 | 10.9 | 2.72 | 43.65 | 91 | - | 45.9 | 22.95 |
S 38.2 Streptococcus salivarius sp. salivarius | 5.45 | 5.45 | 0.34 | - | 11.37 | 22.75 | 22.95 | 11.47 |
S 35.4 Streptococcus intermedius | 21.8 | 21.8 | 1.36 | 1.36 | 0.71 | - | 45.9 | - |
S 47 Streptococcus mitis | 5.45 | 10.9 | 0.34 | 5.45 | 45.5 | - | 45.9 | |
S 48 Streptococcus acidominimas | 2.72 | 10.9 | 1.36 | 5.45 | 45.5 | - | 45.9 | 22.95 |
S 123 Streptococcus acidominimas | 5.45 | 21.8 | 2.72 | - | 45.5 | - | 45.9 | 5.73 |
S 44 Streptococcus acidominimas | 5.45 | 5.45 | 0.17 | 5.45 | 11.37 | 5.68 | 22.95 | 22.95 |
Strain | EO/Standard | MFI Sample (PI) | MFI Viable Cells Control (PI) | MFI Sample (EB) | MFI Viable Cell Control (EB) | MFI % (PI) | MFI % (EB) | Proposed Mechanism |
---|---|---|---|---|---|---|---|---|
Streptococcus salivarius sp. salivarius | β-pinene | 5.47 | 4.52 | 18.43 | 6.92 | 166.33 | EP | |
S. hortensis | 9.31 | 6.2 | 27.38 | 8.2 | 50.16 | 233.90 | EP | |
A. graveolens | 3.79 | 6.2 | 10.05 | 8.2 | ||||
S. officinalis | 4 | 3.64 | 27.63 | 9.06 | 204.97 | EP | ||
Streptococcus acidominimas | A. graveolens | 9.06 | 6.2 | 10 | 8.2 | 46.12 | CWP | |
S. hortensis | 11.24 | 3.98 | 29.8 | 7.86 | 182.41 | 279.13 | EP | |
β-pinene | 10.7 | 3.98 | 27.6 | 7.86 | 168.84 | 251.15 | EP | |
S. officinalis | 5.8 | 3.64 | 12.63 | 9.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, M.; Măruțescu, L.; Oprea, E.; Bleotu, C.; Kamerzan, C.; Chifiriuc, M.C.; Grădișteanu Pircalabioru, G. In Vitro Evaluation of the Antimicrobial and Immunomodulatory Activity of Culinary Herb Essential Oils as Potential Perioceutics. Antibiotics 2020, 9, 428. https://doi.org/10.3390/antibiotics9070428
Popa M, Măruțescu L, Oprea E, Bleotu C, Kamerzan C, Chifiriuc MC, Grădișteanu Pircalabioru G. In Vitro Evaluation of the Antimicrobial and Immunomodulatory Activity of Culinary Herb Essential Oils as Potential Perioceutics. Antibiotics. 2020; 9(7):428. https://doi.org/10.3390/antibiotics9070428
Chicago/Turabian StylePopa, Marcela, Luminița Măruțescu, Eliza Oprea, Coralia Bleotu, Crina Kamerzan, Mariana Carmen Chifiriuc, and Grațiela Grădișteanu Pircalabioru. 2020. "In Vitro Evaluation of the Antimicrobial and Immunomodulatory Activity of Culinary Herb Essential Oils as Potential Perioceutics" Antibiotics 9, no. 7: 428. https://doi.org/10.3390/antibiotics9070428
APA StylePopa, M., Măruțescu, L., Oprea, E., Bleotu, C., Kamerzan, C., Chifiriuc, M. C., & Grădișteanu Pircalabioru, G. (2020). In Vitro Evaluation of the Antimicrobial and Immunomodulatory Activity of Culinary Herb Essential Oils as Potential Perioceutics. Antibiotics, 9(7), 428. https://doi.org/10.3390/antibiotics9070428