Surface Functionalization of Wool via Microbial-Transglutaminase as Bio-Mordant to Improve Dyeability with Madder in the Presence of Alum
Abstract
:1. Introduction
- As m-TGase widely exists in hosts of different organisms and microorganisms, it can be produced at relatively low cost and the industrial level easily [41].
2. Experimental Work
2.1. Materials and Apparatuses
2.2. Dye Extraction
2.3. Mordanting, Pretreatment of Wool with Enzymes, and Dyeing Procedures
3. Results
3.1. FT-IR Analysis
3.2. Surface Morphology
3.3. Contact Angle and Wettability
3.4. Colorimetric Analysis
3.5. Color Variation
3.6. Color Fastness Performance of Dyed Woolen Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hernández, V.A.; Galleguillos, F.; Sagredo, N.; Machuca, Á. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi. Coatings 2018, 8, 77. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.A.; Al Amoudi, H.A. Application of myrrh extract as an eco-friendly dye and antimicrobial agent on wool and silk fabrics part 2: Antimicrobial activity and fastness property. J. Nat. Fibers 2018, 1–14. [Google Scholar] [CrossRef]
- Jahangiri, A.; Ghoreishian, S.M.; Akbari, A.; Norouzi, M.; Ghasemi, M.; Ghoreishian, M.; Shafiabadi, E. Natural Dyeing of Wool by Madder (Rubia tinctorum L.) Root Extract Using Tannin-based Biomordants: Colorimetric, Fastness and Tensile Assay. Fibers Polym. 2018, 19, 2139–2148. [Google Scholar] [CrossRef]
- Haji, A.; Qavamnia, S.S.; Nasiriboroumand, M. The use of D-optimal design in optimization of wool dyeing with Juglans regia bark. Ind. Text. 2018, 69, 104–110. [Google Scholar]
- İşmal, Ö.E. Greener natural dyeing pathway using a by-product of olive oil; prina and biomordants. Fibers Polym. 2017, 18, 773–785. [Google Scholar] [CrossRef]
- Kiumarsi, A.; Parvinzadeh Gashti, M.; Salehi, P.; Dayeni, M. Extraction of dyes from Delphinium Zalil flowers and dyeing silk yarns. J. Text. Inst. 2017, 108, 66–70. [Google Scholar] [CrossRef]
- Parvinzadeh Gashti, M. An Environmentally Method for Dyeing Rug Pile using Fruit Waste Colorant. Res. J. Chem. Environ. 2009, 13, 49–53. [Google Scholar]
- Ebrahimi, I.; Parvinzadeh Gashti, M. Extraction of polyphenolic dyes from henna, pomegranate rind, and Pterocarya fraxinifolia for nylon 6 dyeing. Coloration Technol. 2016, 132, 162–176. [Google Scholar] [CrossRef]
- Ebrahimi, I.; Parvinzadeh Gashti, M. Extraction of juglone from Pterocarya fraxinifolia leaves for dyeing, anti-fungal finishing, and solar UV protection of wool. Coloration Technol. 2015, 131, 451–457. [Google Scholar] [CrossRef]
- Iglesias, M.S.; Sequeiros, C.; García, S.; Olivera, N.L. Eco-friendly anti-felting treatment of wool top based on biosurfactant and enzymes. J. Clean. Prod. 2019, 220, 846–852. [Google Scholar] [CrossRef]
- Shabbir, M.; Rather, L.J.; Bukhari, M.N.; Ul-Islam, S.; Shahid, M.; Khan, M.A.; Mohammad, F. Light Fastness and Shade Variability of Tannin Colorant Dyed Wool with the Effect of Mordanting Methods. J. Nat. Fibers 2019, 16, 100–113. [Google Scholar] [CrossRef]
- Höcker, H. Plasma treatment of textile fibers. In Pure and Applied Chemistry; De Gruyter: Berlin, Germany, 2002; pp. 423–427. [Google Scholar]
- Prajapati, C.D.; Smith, E.; Kane, F.; Shen, J. Selective enzymatic modification of wool/polyester blended fabrics for surface patterning. J. Clean. Prod. 2019, 211, 909–921. [Google Scholar] [CrossRef]
- Demir, A.G.; Oliveira, F.R.; Gulumser, T.; Souto, A.P. New Possibilities of Raw Cotton Pre-treatment before reactive dyeing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 460, 012026. [Google Scholar] [CrossRef]
- Cardamone, J.M. Enzyme-mediated Crosslinking of Wool. Part I: Transglutaminase. Text. Res. J. 2007, 77, 214–221. [Google Scholar]
- Zohdy, M.H. Cationization and gamma irradiation effects on the dyeability of polyester fabric towards disperse dyes. Radiat. Phys. Chem. 2005, 73, 101–110. [Google Scholar] [CrossRef]
- Barani, H.; Montazer, M.; Samadi, N.; Toliyat, T. In situ synthesis of nano silver/lecithin on wool: Enhancing nanoparticles diffusion. Colloids Surf. B Biointerfaces 2012, 92, 9–15. [Google Scholar] [CrossRef]
- Klemenčič, D.; Tomšič, B.; Kovač, F.; Žerjav, M.; Simončič, A.; Simončič, B. Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix. Colloids Surf. B Biointerfaces 2013, 111, 517–522. [Google Scholar] [CrossRef]
- Ranjbar-Mohammadi, M.; Arami, M.; Bahrami, H.; Mazaheri, F.; Mahmoodi, N.M. Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids Surf. B Biointerfaces 2010, 76, 397–403. [Google Scholar] [CrossRef]
- Kan, C.-W.; Man, W.-S. Pigment. Dyeing of Atmospheric Pressure Plasma-Treated Cotton Fabric. Appl. Sci. 2018, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.M.; Rippon, J.A. The Coloration of Wool and Other Keratin Fibres; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ajmal, A.; Piergiovanni, P.R. Effect of Mordanting on the Adsorption Thermodynamics and Kinetics of Cochineal For Wool. Ind. Eng. Chem. Res. 2018, 57, 4462–4469. [Google Scholar] [CrossRef]
- Bae, J.; Hong, K.H. Optimized Dyeing Process. for Enhancing the Functionalities of Spent Coffee Dyed Wool Fabrics Using a Facile Extraction Process. Polymers 2019, 11, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvinzadeh Gashti, M.; Katozian, B.; Shaver, M.; Kiumarsi, A. Clay nanoadsorbent as an environmentally friendly substitute for mordants in the natural dyeing of carpet piles. Coloration Technol. 2014, 130, 54–61. [Google Scholar] [CrossRef]
- Ding, Y.; Freeman, H.S. Mordant dye application on cotton: Optimisation and combination with natural dyes. Coloration Technol. 2017, 133, 369–375. [Google Scholar] [CrossRef]
- Haar, S.; Schrader, E.; Gatewood, B.M. Comparison of Aluminum Mordants on the Colorfastness of Natural Dyes on Cotton. Cloth. Text. Res. J. 2013, 31, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Periolatto, M.; Ferrero, F.; Giansetti, M.; Mossotti, R.; Innocenti, R. Enzyme-aided wool dyeing with a neutral protease at reduced temperatures. Eng. Life Sci. 2010, 10, 474–479. [Google Scholar] [CrossRef]
- Parvinzadeh, M. A new approach to improve dyeability of nylon 6 fibre using a subtilisin enzyme. Coloration Technol. 2009, 125, 228–233. [Google Scholar] [CrossRef]
- Zhang, R.-P.; Cai, Z.-S. Study on the natural dyeing of wool modified with enzyme. Fibers Polym. 2011, 12, 478–483. [Google Scholar] [CrossRef]
- Du, G.; Cui, L.; Zhu, Y.; Chen, J. Improvement of shrink-resistance and tensile strength of wool fabric treated with a novel microbial transglutaminase from Streptomyces hygroscopicus. Enzym. Microb. Technol. 2007, 40, 1753–1757. [Google Scholar] [CrossRef]
- Cortez, J.; Anghieri, A.; Bonner, P.L.; Griffin, M.; Freddi, G. Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzym. Microb. Technol. 2007, 40, 1698–1704. [Google Scholar] [CrossRef]
- Cortez, J.; Bonner, P.L.R.; Griffin, M. Transglutaminase treatment of wool fabrics leads to resistance to detergent damage. J. Biotechnol. 2005, 116, 379–386. [Google Scholar] [CrossRef]
- Karanikas, E.K.; Kosolia, C.T.; Zarkogianni, M.C.; Nikolaidis, N.F.; Tsatsaroni, E.G. Effect of enzymatic treatment on the dyeing properties of protein wool fibers. Fibers Polym. 2013, 14, 223–229. [Google Scholar] [CrossRef]
- Parvinzadeh, M. Effect of proteolytic enzyme on dyeing of wool with madder. Enzym. Microb. Technol. 2007, 40, 1719–1722. [Google Scholar] [CrossRef]
- Kiumarsi, A.; Parvinzadeh, M. Enzymatic hydrolysis of nylon 6 fiber using lipolytic enzyme. J. Appl. Polym. Sci. 2010, 116, 3140–3147. [Google Scholar] [CrossRef]
- Gashti, M.P.; Assefipour, R.; Kiumarsi, A.; Gashti, M.P. Enzymatic surface hydrolysis of polyamide 6,6 with mixtures of proteolytic and lipolytic enzymes. Prep. Biochem. Biotechnol. 2013, 43, 798–814. [Google Scholar] [CrossRef]
- Feng, X.; Patterson, D.A.; Balaban, M.; Emanuelsson, E.A.C. Enabling the utilization of wool as an enzyme support: Enhancing the activity and stability of lipase immobilized onto woolen cloth. Colloids Surf. B Biointerfaces 2013, 102, 526–533. [Google Scholar] [CrossRef]
- Wang, L.; Yao, J.; Niu, J.; Liu, J.; Li, B.; Feng, M. Eco-Friendly and Highly Efficient Enzyme-Based Wool Shrinkproofing Finishing by Multiple Padding Techniques. Polymers 2018, 10, 1213. [Google Scholar] [CrossRef] [Green Version]
- Parvinzadeh, M.; Assefipour, R.; Kiumarsi, A. Biohydrolysis of nylon 6,6 fiber with different proteolytic enzymes. Polym. Degrad. Stab. 2009, 94, 1197–1205. [Google Scholar] [CrossRef]
- Dogru, M.; Baysal, Z.; Aytekin, C. Dyeing of Wool Fibres with Natural Dyes: Effect of Proteolytic Enzymes. Prep. Biochem. Biotechnol. 2006, 36, 215–221. [Google Scholar] [CrossRef]
- Tesfaw, A.; Assefa, F. Applications of transglutaminase in textile, wool, and leather processing. Int. J. Tex. Sci. 2014, 3, 64–69. [Google Scholar]
- Cortez, J.; Bonner, P.L.R.; Griffin, M. Application of transglutaminases in the modification of wool textiles. Enzym. Microb. Technol. 2004, 34, 64–72. [Google Scholar] [CrossRef]
- Montazer, M.; Pajootan, E.; Lessan, F. Microbial trans-glutaminase enhances the physical and mechanical properties of depigmented wool. Eng. Life Sci. 2012, 12, 216–222. [Google Scholar] [CrossRef]
- Montazer, M.; Ramin, A. Influences of Proteases and Trans.-glutaminases on Wool. Fibres Text. East. Eur. 2010, 18, 79. [Google Scholar]
- Montazer, M.; Lessan, F.; Pajootan, E.; Dadashian, F. Treatment of Bleached Wool with Trans.-Glutaminases to Enhance Tensile Strength, Whiteness, and Alkali Resistance. Appl. Biochem. Biotechnol. 2011, 165, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Fan, X.; Wang, P.; Wang, Q.; Fu, G. Casein and transglutaminase-mediated modification of wool surface. Eng. Life Sci. 2011, 11, 201–206. [Google Scholar] [CrossRef]
- Ge, F.; Cai, Z.; Zhang, H.; Zhang, R. Transglutaminase treatment for improving wool fabric properties. Fibers Polym. 2009, 10, 787–790. [Google Scholar] [CrossRef]
- Hossain, K.M.G.; Juan, A.R.; Tzanov, T. Simultaneous protease and transglutaminase treatment for shrink resistance of wool. Biocatal. Biotransformation 2008, 26, 405–411. [Google Scholar] [CrossRef]
- Cardamone, J.M.; Martin, J.J. Keratin Coatings for Wool: Shrinkproofing and Nanoparticle Delivery. Macromol. Symp. 2008, 272, 161–166. [Google Scholar] [CrossRef]
- Hossain KM, G.; González, M.D.; Juan, A.R.; Tzanov, T. Enzyme-mediated coupling of a bi-functional phenolic compound onto wool to enhance its physical, mechanical and functional properties. Enzym. Microb. Technol. 2010, 46, 326–330. [Google Scholar] [CrossRef]
- Cui, L.; Du, G.; Chen, J.; Wang, Q.; Wang, P.; Fan, X. Effect of microbial transglutaminase on dyeing properties of natural dyes on wool fabric. Biocatal. Biotransform. 2008, 26, 399–404. [Google Scholar] [CrossRef]
- Shabbir, M.; Rather, L.J.; Bukhari, M.N.; Shahid, M.; Khan, M.A.; Mohammad, F. An eco-friendly dyeing of woolen yarn by Terminalia chebula extract with evaluations of kinetic and adsorption characteristics. J. Adv. Res. 2016, 7, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yu, H.; Huang, K. Structural characteristics and biocompatibility of a casein-based nanocomposite for potential biomedical applications. J. Mater. Sci. 2018, 53, 3959–3971. [Google Scholar] [CrossRef]
- Rather, L.J.; Khan, M.A.; Mohammad, F. Adsorption and Kinetic studies of Adhatoda vasica natural dye onto woolen yarn with evaluations of Colorimetric and Fluorescence Characteristics. J. Environ. Chem. Eng. 2016, 4, 1780–1796. [Google Scholar] [CrossRef]
- Yayli, D.; Turhan, S.; Saricaoglu, F.T. Edible Packaging Film Derived from Mechanically Deboned Chicken Meat Proteins: Effect of Transglutaminase on Physicochemical Properties. Korean J. Food Sci. Anim. Resour. 2017, 37, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanta, A.K.; Konar, A. Dyeing of textiles with natural dyes. In Natural Dyes; IntechOpen: London, UK, 2011. [Google Scholar]
- Rather, L.J.; Shabbir, M.; Bukhari, M.N.; Shahid, M.; Khan, M.A.; Mohammad, F. Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. J. Environ. Chem. Eng. 2016, 4, 3041–3049. [Google Scholar] [CrossRef]
- Farizadeh, K.; Yazdanshenas, M.E.; Montazer, M.; Malek RM, A.; Rashidi, A. Kinetic Studies of Adsorption of Madder on Wool Using Various Models. Text. Res. J. 2010, 80, 847–855. [Google Scholar] [CrossRef]
- Clementi, C.; Nowik, W.; Romani, A.; Cibin, F.; Favaro, G. A spectrometric and chromatographic approach to the study of ageing of madder (Rubia tinctorum L.) dyestuff on wool. Anal. Chim. Acta 2007, 596, 46–54. [Google Scholar] [CrossRef]
% | L* | a* | b* | C | h | K/S | |
---|---|---|---|---|---|---|---|
Untreated | - | 56.56 ± 1.27 | 19.10 ± 0.57 | 17.18 ± 0.97 | 25.69 ± 0.81 | 41.97 ± 0.48 | 4.21 ± 1.32 |
Alum | 5 | 40.10 ± 1.46 | 40.47 ± 0.76 | 27.35 ± 0.82 | 48.85 ± 0.45 | 34.05 ± 0.49 | 14.83 ± 1.40 |
10 | 37.50 ± 1.45 | 38.18 ± 1.28 | 26.92 ± 0.96 | 46.71 ± 0.61 | 35.19 ± 1.41 | 17.81 ± 1.00 | |
20 | 37.24 ± 1.14 | 40.99 ± 1.05 | 26.44 ± 1.31 | 48.78 ± 0.85 | 32.82 ± 1.06 | 16.73 ± 0.89 | |
Enzyme | 5 | 40.72 ± 2.10 | 28.46 ± 0.79 | 24.76 ± 1.82 | 37.72 ± 1.32 | 41.03 ± 1.34 | 14.14 ± 1.04 |
10 | 40.01 ± 1.22 | 31.84 ± 1.38 | 26.96 ± 1.17 | 41.73 ± 1.41 | 40.25 ± 1.47 | 16.34 ± 1.05 | |
20 | 39.79 ± 2.03 | 30.45 ± 0.96 | 25.89 ± 1.70 | 39.96 ± 0.79 | 40.37 ± 1.08 | 16.25 ± 0.86 | |
Enzyme 5% | Alum 5 | 37.67 ± 1.12 | 39.73 ± 1.18 | 29.63 ± 0.83 | 49.56 ± 0.67 | 36.72 ± 1.72 | 20.33 ± 0.98 |
Alum 10 | 35.67 ± 1.26 | 39.53 ± 1.39 | 28.62 ± 0.85 | 48.81 ± 1.07 | 35.91 ± 1.22 | 21.55 ± 0.82 | |
Alum 20 | 36.98 ± 1.22 | 42.25 ± 1.29 | 29.12 ± 1.63 | 51.31 ± 0.98 | 34.58 ± 1.55 | 20.54 ± 1.32 | |
Enzyme 10% | Alum 5 | 37.81 ± 1.63 | 39.30 ± 0.62 | 27.05 ± 1.05 | 47.71 ± 0.90 | 34.53 ± 1.26 | 17.26 ± 1.12 |
Alum 10 | 39.43 ± 1.26 | 39.28 ± 1.10 | 29.52 ± 1.23 | 49.13 ± 1.00 | 36.93 ± 0.81 | 17.42 ± 1.04 | |
Alum 20 | 38.14 ± 1.25 | 40.53 ± 1.12 | 29.86 ± 0.88 | 50.34 ± 1.25 | 36.37 ± 0.77 | 19.74 ± 1.01 | |
Enzyme 20% | Alum 5 | 37.86 ± 1.75 | 37.20 ± 1.33 | 26.58 ± 0.63 | 45.72 ± 0.88 | 35.54 ± 1.52 | 17.35 ± 0.90 |
Alum 10 | 38.63 ± 2.51 | 38.38 ± 2.06 | 28.65 ± 1.10 | 47.90 ± 0.84 | 36.74 ± 0.52 | 18.14 ± 0.96 | |
Alum 20 | 34.81 ± 2.16 | 38.96 ± 5.19 | 26.63 ± 0.79 | 47.20 ± 0.60 | 34.35 ± 0.85 | 21.54 ± 1.31 |
Untreated | Treated | ||
---|---|---|---|
Alum 5% | Alum 10% | Alum 20% | |
m-TGase 5% | m-TGase 10% | m-TGase 20% | |
m-TGase 5% + Alum 5% | m-TGase 5% + Alum 10% | m-TGase 5% + Alum 20% | |
m-TGase 10% + Alum 5% | m-TGase 10% + Alum 10% | m-TGase 10% + Alum 20% | |
m-TGase 20% + Alum 5% | m-TGase 20% + Alum 10% | m-TGase 20% + Alum 20% | |
% | Light Fastness | Wash Fastness | ||
---|---|---|---|---|
Wool | Cotton | |||
Madder | 50 | 2 | 3 | 3–4 |
Alum | 5 | 3–4 | 4–5 | 5 |
10 | 3–4 | 4–5 | 5 | |
20 | 3–4 | 4–5 | 5 | |
Enzyme | 5 | 2–3 | 3–4 | 4 |
10 | 2–3 | 4 | 4–5 | |
20 | 2–3 | 3–4 | 4 | |
Enzyme 5% | Alum 5 | 3–4 | 4–5 | 4–5 |
Alum 10 | 3–4 | 4–5 | 4–5 | |
Alum 20 | 3–4 | 4–5 | 4–5 | |
Enzyme 10% | Alum 5 | 3–4 | 4–5 | 4–5 |
Alum 10 | 3–4 | 4–5 | 4–5 | |
Alum 20 | 3–4 | 4–5 | 4–5 | |
Enzyme 20% | Alum 5 | 3–4 | 4–5 | 4–5 |
Alum 10 | 3–4 | 4–5 | 4–5 | |
Alum 20 | 4 | 4–5 | 4–5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assefi Pour, R.; He, J. Surface Functionalization of Wool via Microbial-Transglutaminase as Bio-Mordant to Improve Dyeability with Madder in the Presence of Alum. Coatings 2020, 10, 78. https://doi.org/10.3390/coatings10010078
Assefi Pour R, He J. Surface Functionalization of Wool via Microbial-Transglutaminase as Bio-Mordant to Improve Dyeability with Madder in the Presence of Alum. Coatings. 2020; 10(1):78. https://doi.org/10.3390/coatings10010078
Chicago/Turabian StyleAssefi Pour, Reza, and Jinxin He. 2020. "Surface Functionalization of Wool via Microbial-Transglutaminase as Bio-Mordant to Improve Dyeability with Madder in the Presence of Alum" Coatings 10, no. 1: 78. https://doi.org/10.3390/coatings10010078
APA StyleAssefi Pour, R., & He, J. (2020). Surface Functionalization of Wool via Microbial-Transglutaminase as Bio-Mordant to Improve Dyeability with Madder in the Presence of Alum. Coatings, 10(1), 78. https://doi.org/10.3390/coatings10010078