Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure
3.2. Microhardness
3.3. Wear Resistance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, J.; Liu, S.; Yu, S.; Yu, X.; Fan, D. Arc deposition of wear resistant layer TiN on Ti6Al4V using simultaneous feeding of nitrogen and wire. Surf. Coat. Technol. 2020, 381, 125141. [Google Scholar] [CrossRef]
- Fatoba, O.S.; Adesina, O.S.; Popoola, A.P.I. Evaluation of microstructure, microhardness, and electrochemical properties of laser-deposited Ti-Co coatings on Ti-6Al-4V Alloy. Int. J. Adv. Manuf. Technol. 2018, 97, 2341–2350. [Google Scholar] [CrossRef]
- Fu, S.; Yang, L.; Wang, P.; Wang, S.; Li, Z. Comparison of the microstructure evolution and wear resistance of Ti6Al4V composite coatings reinforced by hard pure or Ni-plated cubic boron nitride particles prepared with laser cladding on a Ti6Al4V substrate. Coatings 2020, 10, 702. [Google Scholar] [CrossRef]
- Sokolov, P.; Aleshchenko, A.; Koshmin, A.; Cheverikin, V.; Petrovskiy, P.; Travyanov, A.; Sova, A. Effect of hot rolling on structure and mechanical properties of Ti-6Al-4V alloy parts produced by direct laser deposition. Int. J. Adv. Manuf. Technol. 2020, 107, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Bai, P.; Du, W.; Li, Y.; Yang, X.; Wang, Q. In-situ synthesis of TiC/graphene/Ti6Al4V composite coating by laser cladding. Mater. Lett. 2020, 270, 127711. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Jiang, Y.; Kang, D.; Juan, Y.; Lu, Z. Investigation into corrosion and wear behaviors of laser-clad coatings on Ti6Al4V. Mater. Res. Express 2020, 7, 016587. [Google Scholar] [CrossRef]
- Xu, H.; Xing, H.; Dong, A.; Du, D.; Wang, D.; Huang, H.; Zhu, G.; Shu, D.; Sun, B.; She, H.; et al. Investigation of gum metal coating on Ti6Al4V plate by direct laser deposition. Surf. Coat. Technol. 2019, 363, 161–169. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, A.; Das, A.K.; Dixit, A.R. Parametric study and characterization of AlN-Ni-Ti6Al4V composite cladding on titanium alloy. Surf. Coat. Technol. 2018, 349, 37–49. [Google Scholar]
- Zhou, Z.; Liu, X.; Zhuang, S.; Yang, X.; Wang, M.; Sun, C. Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coatings containing metal sulfides on Ti6Al4V alloy. Appl. Surf. Sci. 2019, 481, 209–218. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Liu, J.; Zhao, L.; Dai, J. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition. Mater. Manuf. Process. 2016, 31, 1461–1467. [Google Scholar] [CrossRef]
- Adesina, O.S.; Popoola, A.P.I.; Pityana, S.L.; Oloruntoba, D.T. Microstructural and tribological behavior of in situ synthesized Ti/Co coatings on Ti-6Al-4V alloy using laser surface cladding technique. Int. J. Adv. Manuf. Technol. 2018, 95, 1265–1280. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H. Microstructure and wear properties of laser clad TiCo/Ti2Co intermetallic coatings on titanium alloy. Appl. Surf. Sci. 2005, 243, 278–286. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Dai, J. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti-6Al-4V. Mater. Des. 2015, 80, 174–181. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Liu, J.; Chen, C.; Dai, J.; Zhao, Z. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Opt. Laser Technol. 2017, 92, 156–162. [Google Scholar] [CrossRef]
- Adesina, O.S.; Obadele, B.A.; Farotade, G.A.; Isadare, D.A.; Adediran, A.A.; Ikubanni, P.P. Influence of phase composition and microstructure on corrosion behavior of laser based Ti–Co–Ni ternary coatings on Ti-6Al-4V alloy. J. Alloys Compd. 2020, 827, 154245. [Google Scholar] [CrossRef]
- Hu, L.; Li, J.; Lv, Y.; Tao, Y. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition. Rare Met. 2020, 39, 436–447. [Google Scholar] [CrossRef]
- Chen, T.; Liu, D.; Wu, F.; Wang, H. Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding. Materials 2018, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Xu, P.; Wang, Y.; Zou, Y.; Gong, H.; Lu, F. Laser synthesis and microstructure of micro- and nano-structured WC reinforced Co-based cladding layers on titanium alloy. J. Alloys Compd. 2018, 749, 10–22. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Wang, P.; Li, H.; Yang, H.; Ye, Y.; Li, Z. Microstructural evolution and abrasive resistance of WC7Co ceramic particle-reinforced Ti6Al4V composite coating prepared by pulse laser cladding. J. Iron Steel Res. Int. 2020, 27, 228–237. [Google Scholar] [CrossRef]
- Li, N.; Xiong, Y.; Xiong, H.; Shi, G.; Blackburn, J.; Liu, W.; Qin, R. Microstructure, formation mechanism and property characterization of Ti + SiC laser cladded coatings on Ti6Al4V alloy. Mater. Charact. 2019, 148, 43–51. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Qin, J.; Chen, F. Corrosion protection of Ti6Al4V by a composite coating with a plasma electrolytic oxidation layer and sol-gel layer filled with graphene oxide. Prog. Org. Coat. 2020, 144, 105632. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kharaziha, M.; Salimijazi, H.R. Double layer graphene oxide-PVP coatings on the textured Ti6Al4V for improvement of frictional and biological behavior. Surf. Coat. Technol. 2019, 374, 656–665. [Google Scholar] [CrossRef]
- Zuo, Y.; Li, T.; Yu, P.; Zhao, Z.; Chen, X.; Zhang, Y.; Chen, F. Effect of graphene oxide additive on tribocorrosion behavior of MAO coatings prepared on Ti6Al4V alloy. Appl. Surf. Sci. 2019, 480, 26–34. [Google Scholar] [CrossRef]
- Liu, W.; Blawert, C.; Zheludkevich, M.L.; Liu, Y.; Talha, M.; Shi, Y.; Chen, L. Effects of graphene nanosheets on the ceramic coatings formed on Ti6Al4V alloy drill pipe by plasma electrolytic oxidation. J. Alloys Compd. 2019, 789, 996–1007. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Li, Z.; Xu, Y.; Zeng, X.; Zhao, S.; Deng, J.; Hu, H.; Zhang, Y.; Ren, T. Microtribological properties of Ti6Al4V alloy treated with self-assembled dopamine and graphene oxide coatings. Tribol. Int. 2019, 137, 46–58. [Google Scholar] [CrossRef]
- Palaniappan, N.; Cole, I.S.; Caballero-Briones, F.; Manickam, S.; Lal, C.; Sathiskumar, J. Neodymium-decorated graphene oxide as a corrosion barrier layer on Ti6Al4V alloy in acidic medium. RSC Adv. 2019, 9, 8537–8545. [Google Scholar] [CrossRef] [Green Version]
- Bulbul, E.; Aksakal, B. Synthesizing and characterization of nano-Graphene Oxide-reinforced Hydroxyapatite Coatings on laser treated Ti6Al4V surfaces. Acta Bioeng. Biomech. 2017, 19, 171–180. [Google Scholar]
- Lei, Y.; Sun, R.; Tang, Y.; Niu, W. Experimental and thermodynamic analysis of laser clad Cr3C2/Ni coatings on a Ti6Al4V substrate produced with different incident laser powers. Lasers Eng. 2015, 32, 207–220. [Google Scholar]
Element | Ti | Al | V | Fe | Others |
---|---|---|---|---|---|
Content (wt.%) | 88.99 | 6.0 | 4.33 | 0.3 | 0.38 |
Element | Co | Cr | Mo | Fe | Others |
---|---|---|---|---|---|
Content (wt.%) | 76.68 | 12.93 | 10.86 | 0.12 | 0.41 |
Parameters | Value |
---|---|
Laser power (W) | 1200 |
Scanning speed (mm/s) | 6 |
Supply speed (r/min) | 1.2 |
Spot size (mm) | 4 |
Spectrum | C | Al | Ti | V | Cr | Co | Mo |
---|---|---|---|---|---|---|---|
1 | 7.01 | 1.91 | 57.27 | 3.66 | 10.10 | 18.01 | 2.04 |
2 | 2.62 | 2.24 | 60.50 | 4.22 | 10.76 | 16.34 | 3.32 |
Spectrum | C | Al | Ti | V | Cr | Co | Mo |
---|---|---|---|---|---|---|---|
1 | 5.38 | 1.21 | 31.42 | 2.52 | 28.71 | 24.73 | 6.03 |
2 | 2.10 | 0.79 | 36.64 | 3.01 | 15.93 | 40.56 | 0.96 |
Different Conditions | Width/mm | Depth/μm |
---|---|---|
0 wt.% GO | 0.90 | 18 |
0.2 wt.% GO | 0.85 | 10 |
0.5 wt.% GO | 0.70 | 10 |
0.8 wt.% GO | 0.90 | 12 |
substrate | 1.05 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Wu, M.; Cui, C.; Wang, H. Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding. Coatings 2020, 10, 1048. https://doi.org/10.3390/coatings10111048
Miao X, Wu M, Cui C, Wang H. Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding. Coatings. 2020; 10(11):1048. https://doi.org/10.3390/coatings10111048
Chicago/Turabian StyleMiao, Xiaojin, Meiping Wu, Chen Cui, and Hang Wang. 2020. "Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding" Coatings 10, no. 11: 1048. https://doi.org/10.3390/coatings10111048
APA StyleMiao, X., Wu, M., Cui, C., & Wang, H. (2020). Effect of Graphene Oxide on the Performance of Co-Based Coatings on Ti6Al4V Alloys by Laser Cladding. Coatings, 10(11), 1048. https://doi.org/10.3390/coatings10111048