Hydrophilic Titania Thin Films from a Molecular Precursor Film Formed via Electrospray Deposition on a Quartz Glass Substrate Precoated with Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SWCNT Precoated Quartz Glass Substrates
2.3. Preparation of Precursor Solutions for ESD and Spin-Coating Processes
2.4. Fabrication of the Precursor Film and Titania Thin Film
2.5. Characterization of SWCNT Ultra-Thin Film and Titania Thin Films
2.5.1. Surface Morphology and Electrical Resistance of SWCNT Ultra-Thin Film
2.5.2. Surface Morphology, Film Thickness, and Adherent Strength of Titania Thin Films
2.5.3. XRD Measurements of Titania Thin Films
2.5.4. Chemical Characterization of Titania Thin Films
2.5.5. Raman Spectra of SWCNT Ultra-Thin Film and Titania Thin Films
2.5.6. Transmittance Spectra of Titania Thin Films and Precursor Films on Quartz Glass Substrate
2.5.7. Refractive Index of Titania Thin Films on Quartz Glass Substrate
2.5.8. Photoluminescence Spectra of Titania Thin Films on Quartz Glass Substrate
2.6. Hydrophilicity of Titania Thin Films
3. Results
3.1. Surface Morphology and Sheet Resistance of QCNT
3.2. Surface Morphology, Film Thickness, and Adhesion Strength of Titania Thin Films
3.3. XRD Patterns of Titania Thin Films
3.4. Chemical Characterization of Titania Thin Films
3.5. Raman Spectra of SWCNT Ultra-Thin Film and Titania Thin Films
3.6. Optical Properties of Titania Thin Films and Precursor Films on Quartz Glass Substrate
3.7. Photoluminescence Spectra of Titania Thin Films on Quartz Glass Substrate
3.8. Hydrophilicity of Thin Films
4. Discussion
4.1. Fabrication of Titania Thin Films on Insulating Substrates
4.2. Homogeneous Coating of Titania Thin Films Via ESD Process
4.3. Strong Adhesion of Titania Thin Films onto the Quartz Glass Substrate by Heat Treatment
4.4. Co-Presence of Amorphous Phase with Anatase Crystals in Titania Thin Films Via the ESD Process
4.5. Refractive Index and Optical Bandgap of Titania Thin Films Fabricated Via the ESD Process
4.6. Hydrophilicity of Titania Thin Films Prepared Via the ESD Process
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Syafiq, A.; Vengadaesvaran, B.; Pandey, A.K.; Nasrudin, A.R. Superhydrophilic smart coating for self-cleaning application on glass substrate. J. Nanomater. 2018, 2018, 6412601. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Raut, H.K.; Nair, A.S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322. [Google Scholar] [CrossRef]
- Mills, A.; Crow, M. A study of factors that change the wettability of titania films. Int. J. Photoenergy 2008, 470670. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Mallick, T.K. Hydrophilic and Superhydrophilic Self-Cleaning Coatings by Morphologically Varying ZnO Microstructures for Photovoltaic and Glazing Applications. ACS Omega 2020, 5, 1033–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudakova, A.V.; Emeline, A.V.; Bulanin, K.M.; Aida, V.; Emeline, A.V.; Bulanin, K.M.; Chistyakova, L.V.; Maevskaya, M.V.; Bahnemann, D.W. Self-cleaning properties of zirconium dioxide thin films. J. Photochem. Photobiol. A Chem. 2018, 367, 397–405. [Google Scholar] [CrossRef]
- Bico, J.; Thiele, U.; Quéré, D. Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 41–46. [Google Scholar] [CrossRef]
- Cebeci, F.C.; Wu, Z.; Zhai, L.; Cohen, R.E.; Rubnere, M.F. Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 2006, 22, 2856–2862. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: An overview. J. Electrost. 2008, 66, 197–219. [Google Scholar] [CrossRef]
- Jaworek, A. Electrospray droplet sources for thin film deposition. J. Mater. Sci. 2007, 42, 266–297. [Google Scholar] [CrossRef]
- Nagai, H.; Sato, M. Advanced Coating Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–27. [Google Scholar] [CrossRef]
- Nagai, H.; Sato, M. Heat Treatment in Molecular Precursor Method for Fabricating Metal Oxide Thin Films. Heat Treat. Conv. Nov. Appl. 2012. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Hara, H. A water-resistant precursor in a wet process for TiO2 thin film formation. J. Mater. Chem. 1996, 6, 1767–1770. [Google Scholar] [CrossRef]
- Nagai, H.; Aoyama, S.; Hara, H.; Mochizuki, C.; Takano, I.; Baba, N.; Sato, M. Rutile thin film responsive to visible light and with high UV light sensitivity. J. Mater. Sci. 2009, 44, 861–868. [Google Scholar] [CrossRef]
- Nagai, H.; Hasegawa, M.; Hara, H.; Mochizuki, C.; Takano, I.; Sato, M. An important factor for controlling the photoreactivity of titania: O-deficiency of anatase thin films. J. Mater. Sci. 2008, 43, 6902–6911. [Google Scholar] [CrossRef]
- Unwiset, P.; Chanapattharapol, K.C.; Kidkhunthod, P.; Poo-arporn, Y.; Ohtani, B. Catalytic activities of titania-supported nickel for carbon-dioxide methanation. Chem. Eng. Sci. 2020, 228, 115955. [Google Scholar] [CrossRef]
- Suwazono, Y.; Nagai, H.; Sato, M. Photovoltaic Lithium-ion Battery with Layer-Structured Li2MnIII0.2MnIV0.8O2.9 Thin Film Chemically Fabricated for Cathodic Active Material. Energies 2020, 13, 1486. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.H.; Duraisamy, N.; Muhammad, N.M.; Kim, I.; Choi, H.; Jo, J. Structural and optical properties of electrohydrodynamically atomized TiO2 nanostructured thin films. Appl. Phys. A Mater. Sci. Process. 2012, 107, 715–722. [Google Scholar] [CrossRef]
- Sta, I.; Jlassi, M.; Hajji, M.; Boujmil, M.F.; Jerbi, R.; Kandyla, M.; Kompitsas, M.; Ezzaouia, H. Structural and optical properties of TiO2 thin films prepared by spin coating. J. Sol-Gel Sci. Technol. 2014, 72, 421–427. [Google Scholar] [CrossRef]
- Ghosh, G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 1999, 163, 95–102. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Morales, E.R.; Mathews, N.R.; Reyes-Coronado, D.; Magaña, C.R.; Acosta, D.R.; Alonso-Nunez, G.; Martinez, O.S.; Mathew, X. Physical properties of the CNT: TiO2 thin films prepared by sol-gel dip coating. Sol. Energy 2012, 86, 1037–1044. [Google Scholar] [CrossRef]
- Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D.E.; Kappes, M.M. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J. Phys. Chem. B 2005, 109, 10567–10573. [Google Scholar] [CrossRef] [PubMed]
- Gallart, M.; Cottineau, T.; Hönerlage, B.; Keller, V.; Keller, N.; Gilliot, P. Temperature dependent photoluminescence of anatase and rutile TiO2 single crystals: Polaron and self-trapped exciton formation. J. Appl. Phys. 2018, 124. [Google Scholar] [CrossRef]
- Pallotti, D.K.; Passoni, L.; Maddalena, P.; Di Fonzo, F.; Lettieri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO2. J. Phys. Chem. C 2017, 121, 9011–9021. [Google Scholar] [CrossRef]
- He, J.; Behera, R.K.; Finnis, M.W.; Li, X.; Dickey, E.C.; Phillpot, S.R.; Sinnott, S.B. Prediction of high-temperature point defect formation in TiO2 from combined ab initio and thermodynamic calculations. Acta Mater. 2007, 55, 4325–4337. [Google Scholar] [CrossRef]
- Yang, K.H.; Chen, T.Y.; Ho, N.J.; Yang, L.H. In-gap states in wide-band-gap SrTiO3 analyzed by cathodoluminescence. J. Am. Ceram. Soc. 2011, 94, 1811–1816. [Google Scholar] [CrossRef]
- Chen, C.H.; Kelder, E.M.; Schoonman, J. Electrostatic sol-spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films. Thin Solid Films 1999, 342, 35–41. [Google Scholar] [CrossRef]
- Mahalingam, S.; Edirisinghe, M.J. Characteristics of electrohydrodynamically prepared titanium dioxide films. Appl. Phys. A Mater. Sci. Process. 2007, 89, 987–993. [Google Scholar] [CrossRef]
- Jeffrey, C.B.; Scherer, G.W. Sol-Gel Science; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar] [CrossRef]
- Alhomoudi, I.A.; Newaz, G. Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 2009, 517, 4372–4378. [Google Scholar] [CrossRef]
- Wu, H.J.; Tanabe, K.; Nagai, H.; Sato, M. Photo-Induced Super-hydrophilic Thin Films on Quartz Glass by UV Irradiation of Precursor Films Involving a Ti(IV) Complex at Room Temperature. Materials 2019, 12, 348. [Google Scholar] [CrossRef] [Green Version]
- Bittencourt, C.; Rutar, M.; Umek, P.; Mrzel, A.; Vozel, K.; Arčon, D.; Henzler, K.; Krüger, P.; Guttmann, P. Molecular nitrogen in N-doped TiO2 nanoribbons. RSC Adv. 2015, 5, 23350–23356. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.C.; Yu, J.; Hung, Y.T.; Zhang, L. Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films. J. Mater. Chem. 2002, 12, 81–85. [Google Scholar] [CrossRef]
- Kuscer, D.; Kovač, J.; Kosec, M.; Andriesen, R. The effect of the valence state of titanium ions on the hydrophilicity of ceramics in the titanium-oxygen system. J. Eur. Ceram. Soc. 2008, 28, 577–584. [Google Scholar] [CrossRef]
Thin Films | Surface Roughness/nm | Film Thickness/nm |
---|---|---|
FTOESD | 15.5 | 90 |
FTOSPIN | 12.3 | 100 |
QCNTESD | 1.0 | 90 |
QSPIN | 0.7 | 100 |
Thin Film | Crystallite Size (a)/nm |
---|---|
FTOESD | 11.3(4) |
FTOSPIN | 11.7(4) |
QCNTESD | 12(1) |
QSPIN | 11.7(3) |
Charge of Ti Atom | 0 | +2 | +3 | +4 | O/Ti | ||||
Assigned Electrons | 2p3/2 | 2p1/2 | 2p3/2 | 2p1/2 | 2p3/2 | 2p1/2 | 2p3/2 | 2p1/2 | |
Binding Energy/eV | 453.5 | 459.7 | 455.3 | 460.8 | 456.9 | 462.0 | 458.8 | 464.2 | |
FTOESD | 1.0 | 19.1 | 25.3 | 54.5 | 1.81 | ||||
FTOSPIN | 1.4 | 21.0 | 28.4 | 49.2 | 1.81 | ||||
QCNTESD | 1.0 | 20.0 | 28.0 | 51.0 | 1.77 | ||||
QSPIN | 0.7 | 17.0 | 32.0 | 51.0 | 1.72 |
Thin Films | Refractive Index | Bandgap/eV |
---|---|---|
QCNTESD | 1.81 | 3.40 |
QSPIN | 2.14 | 3.44 |
Thin Films | Before UV Irradiation | After UV Irradiation |
---|---|---|
FTOESD | 15 ± 1° | 0° |
FTOSPIN | 54 ± 5° | 14 ± 1° |
QCNTESD | 14 ± 2° | 1 ± 1° |
QSPIN | 60 ± 3° | 12 ± 1° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heita Shafudah, N.; Nagai, H.; Suwazono, Y.; Ozawa, R.; Kudoh, Y.; Takahashi, T.; Onuma, T.; Sato, M. Hydrophilic Titania Thin Films from a Molecular Precursor Film Formed via Electrospray Deposition on a Quartz Glass Substrate Precoated with Carbon Nanotubes. Coatings 2020, 10, 1050. https://doi.org/10.3390/coatings10111050
Heita Shafudah N, Nagai H, Suwazono Y, Ozawa R, Kudoh Y, Takahashi T, Onuma T, Sato M. Hydrophilic Titania Thin Films from a Molecular Precursor Film Formed via Electrospray Deposition on a Quartz Glass Substrate Precoated with Carbon Nanotubes. Coatings. 2020; 10(11):1050. https://doi.org/10.3390/coatings10111050
Chicago/Turabian StyleHeita Shafudah, Natangue, Hiroki Nagai, Yutaka Suwazono, Ryuhei Ozawa, Yukihiro Kudoh, Taiju Takahashi, Takeyoshi Onuma, and Mitsunobu Sato. 2020. "Hydrophilic Titania Thin Films from a Molecular Precursor Film Formed via Electrospray Deposition on a Quartz Glass Substrate Precoated with Carbon Nanotubes" Coatings 10, no. 11: 1050. https://doi.org/10.3390/coatings10111050
APA StyleHeita Shafudah, N., Nagai, H., Suwazono, Y., Ozawa, R., Kudoh, Y., Takahashi, T., Onuma, T., & Sato, M. (2020). Hydrophilic Titania Thin Films from a Molecular Precursor Film Formed via Electrospray Deposition on a Quartz Glass Substrate Precoated with Carbon Nanotubes. Coatings, 10(11), 1050. https://doi.org/10.3390/coatings10111050