Residual Stresses on Various PVD Hard Coatings on Tube and Plate Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonzalo, O.; Navas, V.G.; Coto, B.; Bengoetxea, I.; de Gopegi, U.R.; Etxaniz, M. Influence of the coating residual stresses on the tool wear. Proc. Eng. 2011, 19, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Quinto, D.T. Twenty-five years of PVD coatings at the cutting edge. Fall Bull. 2007, 17–22. Available online: https://www.svc.org/DigitalLibrary/documents/2007_Fall_DTQ.pdf (accessed on 28 October 2020).
- Kumar, T.S.; Prabu, S.B.; Manivasagam, G.; Padmanabhan, K.A. Comparison of TiAlN, AlCrN and AlCrN/TiAlN coatings for cutting-tool applications. Int. J. Min. Met. Mater. 2014, 21, 796–805. [Google Scholar] [CrossRef]
- Koch, R. Stress in Evaporated and Sputtered Thin Films—A Comparison. Surf. Coat. Technol. 2010, 204, 1973–1982. [Google Scholar] [CrossRef]
- Soroka, O.B. Evaluation of residual stresses in PVD-coatings. Part 1. Review. Strength Mater. 2010, 42, 287–296. [Google Scholar] [CrossRef]
- Soroka, O.B. Evaluation of residual stresses in PVD-coatings. Part 2. Strength Mater. 2010, 42, 450–458. [Google Scholar] [CrossRef]
- Lu, J. Handbook of Measurement of Residual Stresses, 1st ed.; Fairmont Press: Upper Saddle River, NJ, USA, 1996; p. 253. [Google Scholar]
- Kandil, F.A.; Lord, J.D.; Fry, A.T.; Grant, P.V. A Review of Residual Stress Measurement Methods—A Guide to Technique Selection. NPL Report MATC (A) 2001, 04. Available online: https://eprintspublications.npl.co.uk/1873/1/matc4.pdf (accessed on 28 October 2020).
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.; Barthel, E.; Doll, G.; Murray, C.; Stoessel, C.; Martinu, L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. 2018, 36, 020801. [Google Scholar] [CrossRef] [Green Version]
- Lille, H.; Kõo, J.; Gregor, A.; Ryabchikov, A.; Sergejev, F.; Traksmaa, R.; Kulu, P. Comparison of Curvature and X-Ray Methods for Measuring of Residual Stresses in Hard PVD Coatings. Mater. Sci. Forum 2011, 681, 455–460. [Google Scholar] [CrossRef]
- Lille, H.; Ryabchikov, A.; Kõo, J.; Adoberg, E.; Mikli, V.; Kübarsepp, J.; Peetsalu, P. Evaluation of Residual Stresses in PVD Coatings by means of Tubular Substrate Length Variation. Mater. Res. Proc. 2018, 6, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Lille, H.; Ryabchikov, A.; Kõo, J.; Adoberg, E.; Lind, L.; Kurissoo, L.; Peetsalu, P. Evaluation of Residual Stresses in PVD Coatings by Means of Strip Substrate Length Variation and Curvature Method of Plate Substrate. Solid State Phenom. 2017, 267, 212–218. [Google Scholar] [CrossRef]
- The Advantages of PVD Coating for Cutting Tools. Available online: http://www.pvdtarget.com/info/the-advantages-of-pvd-coating-for-cutting-tool-23249873.html (accessed on 28 October 2020).
- Vereschaka, A.; Volosova, M.; Chigarev, A.; Sitnikov, N.; Ashmarin, A.; Sotova, C.; Bublikov, J.; Lytkin, D. Influence of the Thickness of a Nanolayer Composite Coating on Values of Residual Stress and the Nature of Coating Wear. Coatings 2020, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Sprute, T.; Tillmann, W.; Grisales, D.; Selvadurai, U.; Fischer, G. Influence of substrate pre-treatments on residual stresses and tribo-mechanical properties of TiAlN-based PVD coatings. Surf. Coat. Technol. 2014, 260, 369–379. [Google Scholar] [CrossRef]
- Kõo, J.; Ryabchikov, A. On the determination of residual stresses in coatings from measured longitudinal deformation of a wire substrate. In Proceedings of the 19th Symposium on Experimental Mechanics of Solids, Jachranka, Poland, 18–20 October 2000; Stupinicki, J., Ed.; Warsaw University of Technology: Jachranka, Poland, 2000; pp. 319–324. Available online: http://hdl.handle.net/10492/3803 (accessed on 28 October 2020).
- Kõo, J.; Valgur, J. Residual stress measurement in coated plates using layer growing/removing methods: 100th anniversary of the publication of Stoney’s paper “The tension of metallic films deposited by electrolysis”. Mater. Sci. Forum 2011, 681, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Paiva, J.M.; Fox-Rabinovich, G.; Locks, E., Jr.; Stolf, P.; Seid Ahmed, Y.; Matos Martins, M.; Veldhuis, S. Tribological and Wear Perfotmance of Nanocomposite PVD Hard Coatings Deposited on Aluminium Die Casting Tool. Materials 2018, 11, 358. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872937/ (accessed on 28 October 2020).
- Haršáni, M.; Ghafoor, N.; Calamba, K.; Žáčková, P.; Sahul, M.; Vopát, T.; Satrapinskyy, L.; Caplovicová, M.; Čaplovič, L. Adhesive-deformation relationships and mechanical properties of nc-AlCrN/a-SiNx hard coatings deposited at different bias voltages. Thin Solid Film. 2018, 650, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Skordaris, G.; Bouzakis, K.; Kotsanis, T.; Charalampous, P.; Bouzakis, E.; Breidenstein, B.; Bergmann, B.; Denkena, B. Effect of PVD film’s residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools. CIRP J. Manuf. Sci. Technol. 2017, 18, 145–151. [Google Scholar] [CrossRef]
- Chang, Y.-Y.; Wang, D.-Y. Characterization of nanocrystalline AlTiN coatings synthesized by a cathodic-arc deposition process. Surf. Coat. Technol. 2007, 201, 6699–6701. Available online: https://www.sciencedirect.com/science/article/pii/S0257897206010437 (accessed on 28 October 2020).
- Murotani, T.; Hirose, H.; Sasaki, T.; Okazaki, K. Study on stress measurement of PVD-coatings layer. Thin Solid Film. 2000, 377–378, 617–620. [Google Scholar] [CrossRef]
- Ryabchikov, A. Development of Some Mechanical Methods for Measurement of Residual Stresses in Coatings. Ph.D. Thesis, Estonian University Life of Sciences, Tartu, Estonia, 2005. [Google Scholar]
- Lind, L.; Peetsalu, P.; Sergejev, F. Wear of Different PVD Coatings at Industrial Fine-blanking Field Tests. Mater. Sci. (Medžiagotyra) 2015, 21, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Sivitski, A.; Gregor, A.; Saarna, M.; Kulu, P.; Sergejev, F. Properties and performance of hard coatings on tool steels under cyclic indentation. Acta Mech. Slovaca 2009, 13, 84–95. Available online: https://www.actamechanica.sk/pdfs/ams/2009/03/10.pdf (accessed on 28 October 2020).
- Veinthal, R.; Sergejev, F.; Yaldiz, C.E.; Mikli, V. Impact Wear Performance of Thin Hard Coatings on TiC Cermets. J. ASTM Int. 2011, 8, 103272. [Google Scholar] [CrossRef]
- Antonov, M.; Hussainova, I.; Kulu, P.; Sergejev, F.; Gregor, A. Assessment of gradient and nanogradient PVD coatings behaviour under erosive, abrasive and impact wear conditions. Wear 2009, 267, 898–906. [Google Scholar] [CrossRef]
Substrates, Materials | Mean Thickness, Diameter, mm | Applicable Width, Length, mm | Modulus of Elasticity, GPa | Poisson’s Ratio | Chemical Components, % | ||||
---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Cr | Mn | Si | |||||
Steel plate | 0.243 | 19.64 | 156.5 | 0.25 | 47.4 | 46.1 | - | 0.6 | 0.1 |
0.311 | 19.62 | 190.0 | 0.30 | 96.2 | - | 1.6 | 0.7 | - | |
0.484 | 19.85 | 190.0 | 0.30 | 96.2 | - | 1.6 | 0.7 | - | |
0.394 | 19.78 | 193.0 | 0.28 | 66.7 | 7.3 | 16.2 | 1.7 | 0.2 | |
Steel tube | d1 = 3.0 d2 = 2.7 d2 = 2.5 | 167.37 167.57 | 193.0 | 0.25 | 64.2 | 8.6 | 17.3 | 1.4 | 0.4 |
Coating | Ti | Al | N | Cr | Si | C | Fe | Temp T, °C | Pressurep, Pa | N2 | C2H2 | Bias Volt. Ub, V |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | sccm | |||||||||||
nACRo | 19.00 | 27.30 | 43.90 | 2.90 | 0.4 | 461 | 1.80 | 147 | 53 | |||
20.35 | 29.18 | 46.90 | 3.12 | |||||||||
AlCrN | 22.80 | 28.10 | 44.60 | 461 | 3.80 | 155 | 41 | |||||
23.84 | 29.46 | 46.70 | ||||||||||
nACo | 55.40 | 13.60 | 31.30 | 1.30 | 2.40 | 0.5 | 476 | 1.32 | 110 | 76 | ||
53.02 | 13.06 | 29.96 | 1.24 | 2.28 | ||||||||
TiAlN | 48.10 | 20.60 | 29.50 | 450 | 1.30 | 110 | 62 | |||||
48.99 | 20.97 | 30.03 | ||||||||||
TiCN | 70.80 | 28.90 | 2.80 | 450 | 0.49 | 45 | 5 | 61 | ||||
69.10 | 28.20 | 2.70 |
Coating Type | Placement of Plates, Mean Values of Substrate Dimensions, mm | Mean Coating Thickness, μm | Average Residual Stresses, GPa | |||
---|---|---|---|---|---|---|
Calculation Result | Literature X-ray Technique | |||||
Equation (1) | Equation (2) | |||||
nACRo | Gradient (nanocomposite) | plate 0° t1 = 0.241 * | 2.7 | −2.05 ± 0.20 | −5.2 [18] t2 = 2.3 μm | |
plate 90° 0.243 * | 1.6 | −3.04 ± 0.33 | ||||
tube 2 | 6.6 | −2.35 ± 0.37 | ||||
plate 0° 0.315 | 6.8 | −4.37 ± 0.68 | ||||
plate 180° 0.314 | 2.9 | −4.30 ± 0.60 | ||||
tube 1 | 10.0 | −3.53 ± 0.43 | ||||
AlCrN | Gradient multilayer | plate 0° 0.484 | 3.4 | −4.30 ± 0.79 | −4.9 [19] −4.0 [18] 3.2 μm | |
plate 0° 0.395 * | 2.8 | −3.54 ± 0.77 | ||||
plate 45° 0.394 * | 3.0 | −3.49 ± 0.61 | ||||
plate 90° 0.393 * | 2.8 | −3.48 ± 0.73 | ||||
tube 2 | 7.1 | −2.90 ± 0.10 | ||||
plate 0° 0.306 | 4.9 | −4.06 ± 0.30 | ||||
plate 180° 0.308 | 2.0 | −3.72 ± 0.99 | ||||
tube 1 | 7.6 | −2.25 ± 0.18 | ||||
nACo | Multilayer (nanocomposite) Hard grade | plate 0° 0.315 | 6.2 | −6.01 ± 0.66 | −4.8 [18] 2.8 μm | |
plate 180° 0.311 | 2.4 | −3.51 ± 0.94 | ||||
tube 1 | 9.5 | −3.92 ± 0.09 | ||||
TiAlN | Multilayer | plate 0° 0.395 | 5.9 | −6.49 ± 0.36 | −5.7 [20] −(6.3–7.5) [21] | |
plate 180° 0.395 | 2.5 | −4.41 ± 0.28 | ||||
tube 2 | 7.4 | −3.06 ± 0.15 | ||||
plate 0° 0.244 | 4.4 | −3.18 ± 0.19 | ||||
plate 180° 0.244 | 1.7 | −2.66 ± 0.37 | ||||
tube 1 | 4.8 | −2.66 ± 0.26 | ||||
TiCN | Gradient | plate 0° 0.397 | 5.3 | −6.08 ± 0.36 | −(4.6–5.0) [22] | |
plate 45° 0.393 * | 3.9 | −6.63 ± 0.36 | ||||
plate 90° 0.393 * | 3.1 | −5.21 ± 0.59 | ||||
tube 2 | 8.8 | −3.62 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lille, H.; Ryabchikov, A.; Peetsalu, P.; Lind, L.; Sergejev, F.; Mikli, V.; Kübarsepp, J. Residual Stresses on Various PVD Hard Coatings on Tube and Plate Substrates. Coatings 2020, 10, 1054. https://doi.org/10.3390/coatings10111054
Lille H, Ryabchikov A, Peetsalu P, Lind L, Sergejev F, Mikli V, Kübarsepp J. Residual Stresses on Various PVD Hard Coatings on Tube and Plate Substrates. Coatings. 2020; 10(11):1054. https://doi.org/10.3390/coatings10111054
Chicago/Turabian StyleLille, Harri, Alexander Ryabchikov, Priidu Peetsalu, Liina Lind, Fjodor Sergejev, Valdek Mikli, and Jakob Kübarsepp. 2020. "Residual Stresses on Various PVD Hard Coatings on Tube and Plate Substrates" Coatings 10, no. 11: 1054. https://doi.org/10.3390/coatings10111054
APA StyleLille, H., Ryabchikov, A., Peetsalu, P., Lind, L., Sergejev, F., Mikli, V., & Kübarsepp, J. (2020). Residual Stresses on Various PVD Hard Coatings on Tube and Plate Substrates. Coatings, 10(11), 1054. https://doi.org/10.3390/coatings10111054