On the Electrical and Optical Properties Stability of P3HT Thin Films Sensitized with Nitromethane Ferric Chloride Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611. [Google Scholar] [CrossRef]
- Michaelson, L. Advances in Conducting Polymers Research; Polymer Science and Technology; Nova Publisher: New York, NY, USA, 2015; ISBN 978-1-63463-285-0. [Google Scholar]
- Krebs, F. Stability and Degradation of Organic and Polymer Solar Cells; Wiley: Chichester, UK, 2012; ISBN 978-1-119-95251-0. [Google Scholar]
- Ludwings, S. P3HT Revisited—From Molecular Scale to Solar Cell Devices; Advances in Polymer Science 265; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-662-45144-1. [Google Scholar]
- Stanculescu, A.; Socol, M.; Socol, G.; Mihailescu, I.N.; Girtan, M.; Stanculescu, F. Maple prepared organic heterostructures for photovoltaic applications. Appl. Phys. A Mater. Sci. Process. 2011, 104, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Socol, M.; Preda, N.; Rasoga, O.; Breazu, C.; Stavarache, I.; Stanculescu, F.; Socol, G.; Gherendi, F.; Grumezescu, V.; Popescu-Pelin, G.; et al. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE. Appl. Surf. Sci. 2016, 374, 403–410. [Google Scholar] [CrossRef]
- Girtan, M. Study of charge carriers’ transport in organic solar cells by illumination area shifting. Sol. Energy Mater. Sol. Cells 2017, 160, 430–434. [Google Scholar] [CrossRef]
- Tran, T.Q.; Lee, J.K.Y.; Chinnappan, A.; Loc, N.H.; Tran, L.T.; Ji, D.; Jayathilaka, W.A.D.M.; Kumar, V.V.; Ramakrishna, S. High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables. J. Mater. Sci. Technol. 2020, 42, 46–53. [Google Scholar] [CrossRef]
- Lee, W.; Hong, C.T.; Kwon, O.H.; Yoo, Y.; Kang, Y.H.; Lee, J.Y.; Cho, S.Y.; Jang, K.-S. Enhanced thermoelectric performance of bar-coated SWCNT/P3HT thin films. ACS Appl. Mater. Interfaces 2015, 7, 6550–6556. [Google Scholar] [CrossRef]
- Etxebarria, I.; Ajuria, J.; Pacios, R. Polymer: Fullerene solar cells: Materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review. J. Photonics Energy 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A.W.Y. Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 2019, 27, 565–575. [Google Scholar] [CrossRef]
- Simitzis, J.; Zoumpoulakis, L. Influence of FeCl3 dopant on the electrical conductivity of pyrolysed aromatic polymers. J. Mater. Sci. 1996, 31, 1615–1620. [Google Scholar] [CrossRef]
- Yabara, Y.; Izawa, S.; Hiramoto, M. Donor/acceptor photovoltaic cells fabricated on p-doped organic single-crystal substrates. Materials 2020, 13, 2068. [Google Scholar] [CrossRef]
- Bedia, J.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J.J.; Belver, C. Review on activated carbons by chemical activation with FeCl3. C J. Carbon Res. 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Hong, C.T.; Lee, W.; Kang, Y.H.; Yoo, Y.; Ryu, J.; Cho, S.Y.; Jang, K.-S. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films. J. Mater. Chem. A 2015, 3, 12314–12319. [Google Scholar] [CrossRef]
- Yamamoto, J.; Furukawa, Y. Electronic and vibrational spectra of positive polarons and bipolarons in regioregular poly(3-hexylthiophene) doped with ferric chloride. J. Phys. Chem. B 2015, 119, 4788–4794. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, J.; Singh, R.; Kant, R.; Rastogi, R.C.; Chand, S.; Kumar, V. Structure-conductivity correlation in ferric chloride-doped poly(3-hexylthiophene). New J. Phys. 2006, 8. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Zhong, Y.; Untilova, V.; Bahri, M.; Herrmann, L.; Biniek, L.; Leclerc, N.; Brinkmann, M. Bringing conducting polymers to high order: Toward conductivities beyond 105 S cm−1 and thermoelectric power factors of 2 mW m−1 K−2. Adv. Energy Mater. 2019, 9. [Google Scholar] [CrossRef]
- Girtan, M. On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films. Org. Electron. 2013, 14, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Kumar, J.; Singh, R.K.; Chand, S.; Kumar, V.; Rastogi, R.C. Mechanism of charge transport in poly(3-octylthiophene). J. Appl. Phys. 2006, 100. [Google Scholar] [CrossRef]
- Bounioux, C.; Díaz-Chao, P.; Campoy-Quiles, M.; Martín-González, M.S.; Goñi, A.R.; Yerushalmi-Rozen, R.; Müller, C. Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ. Sci. 2013, 6, 918–925. [Google Scholar] [CrossRef]
- Sahare, S.; Veldurthi, N.; Datar, S.; Bhave, T. Photon assisted conducting atomic force microscopy study of nanostructured additives in P3HT:PCBM. RSC Adv. 2015, 5, 102795–102802. [Google Scholar] [CrossRef]
- Chen, T.-A.; O’Brien, R.A.; Rieke, R.D. Use of Highly Reactive Zinc Leads to a New, Facile Synthesis for Polyarylenes. Macromolecules 1993, 26, 3462–3463. [Google Scholar] [CrossRef]
- Girtan, M.; Hrostea, L.; Boclinca, M.; Negulescu, B. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by spectroscopic ellipsometry. AIMS Mater. Sci. 2017, 4, 594–613. [Google Scholar] [CrossRef]
Sample | Dispersion Formula | Specific Parameters | Thickness (nm) | χ2 | ||||
---|---|---|---|---|---|---|---|---|
(eV) | (eV) | (eV) | (eV) | |||||
P3HT | 4 × NA | 0.78 ± 0.17 | 1.69 ± 0.01 | 0.01 ± 0.001 | 4.58 ± 0.1 | 0.07 ± 0.01 | 71 ± 3.6 | 3.74 |
0.32 ± 0.02 | 2.07 ± 0.01 | 0.25 ± 0.01 | ||||||
0.13 ± 0.05 | 6.89 ± 1.04 | 1.21 ± 0.33 | ||||||
0.11 ± 0.04 | 2.96 ± 0.09 | 0.88 ± 0.09 | ||||||
P3HT: FeCl3 | P3HT layer: 4 × NA | 1.81 ± 0.65 | 1.07 ± 0.01 | 0.31 ± 0.02 | 1.01 ± 0.01 | 0.15 ± 0.01 | 115 ± 1.5 | 1.58 |
0.52 ± 0.03 | 1.34 ± 0.02 | 0.27 ± 0.02 | ||||||
0.01 ± 0.001 | 5.96 ± 0.32 | 0.04 ± 0.008 | ||||||
0.37 ± 0.21 | 2.15 ± 0.49 | 0.34 ± 0.19 | ||||||
FeCl3 layer | 1.75 ± 0.02 | 1.04 ± 0.66 | 0.001 ± 0.0001 | 1.39 ± 0.08 | 0.34 ± 0.11 | 22 ± 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrostea, L.; Leontie, L.; Dobromir, M.; Doroftei, C.; Girtan, M. On the Electrical and Optical Properties Stability of P3HT Thin Films Sensitized with Nitromethane Ferric Chloride Solutions. Coatings 2020, 10, 1074. https://doi.org/10.3390/coatings10111074
Hrostea L, Leontie L, Dobromir M, Doroftei C, Girtan M. On the Electrical and Optical Properties Stability of P3HT Thin Films Sensitized with Nitromethane Ferric Chloride Solutions. Coatings. 2020; 10(11):1074. https://doi.org/10.3390/coatings10111074
Chicago/Turabian StyleHrostea, Laura, Liviu Leontie, Marius Dobromir, Corneliu Doroftei, and Mihaela Girtan. 2020. "On the Electrical and Optical Properties Stability of P3HT Thin Films Sensitized with Nitromethane Ferric Chloride Solutions" Coatings 10, no. 11: 1074. https://doi.org/10.3390/coatings10111074
APA StyleHrostea, L., Leontie, L., Dobromir, M., Doroftei, C., & Girtan, M. (2020). On the Electrical and Optical Properties Stability of P3HT Thin Films Sensitized with Nitromethane Ferric Chloride Solutions. Coatings, 10(11), 1074. https://doi.org/10.3390/coatings10111074