Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Zinc Oxide Nanoparticle Synthesis
2.3. Bionanocomposites Production
2.4. In Vitro Antimicrobial Characterization of ZnO NP and Bionanocomposites
2.5. Application in Fresh Poultry Meat
2.5.1. Physicochemical Characterization and Thiobarbituric Acid Reactive Substances (TBARS) Index
2.5.2. Microbiological Growth
2.5.3. Total Zinc Migration
2.6. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Antimicrobial Characterization of ZnO NP and the Bionanocomposites
3.2. Application in Fresh Poultry Meat
3.2.1. Physicochemical Characterization and Thiobarbituric Acid Reactive Substances (TBARS) Index
3.2.2. Microbiological Growth
3.2.3. Total Zinc Migration
4. Final Considerations and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Corrado, S.; Sala, S. Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Spada, A.; Conte, A.; Del Nobile, M.A. The influence of shelf life on food waste: A model-based approach by empirical market evidence. J. Clean. Prod. 2018, 172, 3410–3414. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Rodrigues, C.; Ferreira, L.; Pires, J.R.A.; Duarte, M.P.; Coelhoso, I.; Fernando, A.L. In vitro bioactivity of novel chitosan bionanocomposites incorporated with different essential oils. Ind. Crops Prod. 2019, 140, 111563. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Cháfer, M.; Hernández, M.; Chiralt, A.; González-Martínez, C. Antimicrobial activity of polysaccharide films containing essential oils. Food Control 2011, 22, 1302–1310. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Rodrigues, P.F.; Duarte, M.P.; Fernando, A.L. Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts. J. Renew. Mater. 2018, 6, 548–558. [Google Scholar] [CrossRef]
- Ferreira, A.R.V.; Alves, V.D.; Coelhoso, I.M. Polysaccharide-based membranes in food packaging applications. Membranes 2016, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.G.L.; Pires, J.R.; Vieira, É.T.; Coelhoso, I.M.; Duarte, M.P.; Fernando, A.L. Shelf life assessment of fresh poultry meat packaged in novel bionanocomposite of chitosan/montmorillonite incorporated with ginger essential oil. Coatings 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Pires, J.R.A.; de Souza, V.G.L.; Fernando, A.L. Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packag. Shelf Life 2018, 17, 142–149. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Vieira, É.T.; Coelhoso, I.M.; Duarte, M.P.; Fernando, A.L. Activity of chitosan-montmorillonite bionanocomposites incorporated with rosemary essential oil: From in vitro assays to application in fresh poultry meat. Food Hydrocoll. 2019, 89, 241–252. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, C.; Rodrigues, P.F.; Lopes, A.; Silva, R.J.; Caldeira, J.; Duarte, M.P.; Fernandes, F.B.; Coelhoso, I.M.; et al. Physical and morphological characterization of chitosan/montmorillonite films incorporated with ginger essential oil. Coatings 2019, 9, 700. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.G.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B.; Duarte, M.P.; Coelhoso, I.M.; Fernando, A.L. Bionanocomposites of chitosan/montmorillonite incorporated with Rosmarinus officinalis essential oil: Development and physical characterization. Food Packag. Shelf Life 2018, 16, 148–156. [Google Scholar] [CrossRef]
- Mao, H.; Wei, C.; Gong, Y.; Wang, S.; Ding, W. Mechanical and water-resistant properties of eco-friendly chitosan membrane reinforced with cellulose nanocrystals. Polymers 2019, 11, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, J.R.A.; Souza, V.G.L.; Fernando, A.L. Valorization of energy crops as a source for nanocellulose production – Current knowledge and future prospects. Ind. Crops Prod. 2019, 140, 111642. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Ribeiro-Santos, R.; Rodrigues, P.F.; Otoni, C.G.; Duarte, M.P.; Coelhoso, I.M.; Fernando, A.L. Nanomaterial migration from composites into food matrices. In Composite Materials For Food Packaging; Cirillo, G., Kozlowski, M.A., Spizzirri, U.G., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2018; p. 465. ISBN 9781119160205. [Google Scholar]
- Youssef, A.M.; Abou-Yousef, H.; El-Sayed, S.M.; Kamel, S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015, 76, 25–32. [Google Scholar] [CrossRef]
- Tian, F.; Chen, W.; Wu, C.E.; Kou, X.; Fan, G.; Li, T.; Wu, Z. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO 2 and chitosan/nano-SiO 2 films. Int. J. Biol. Macromol. 2019, 126, 917–925. [Google Scholar] [CrossRef]
- Jay, J.M.; Loessner, M.J.; Golde, D.A. Modern Food Microbiology, 7th ed.; Springer: New York, NY, USA, 2005; ISBN 0-387-23180-3. [Google Scholar]
- Espitia, P.J.P.; Soares, N.; dos Reis Coimbra, J.S.; de Andrade, N.J.; Cruz, R.S.; Medeiros, E.A. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging Applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Applerot, G.; Perkas, N.; Amirian, G.; Girshevitz, O.; Gedanken, A. Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl. Surf. Sci. 2009, 256, 3–8. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2008, 25, 241–258. [Google Scholar] [CrossRef]
- Bolognesi, C.; Castle, L.; Cravedi, J.; Engel, K.; Franz, R.; Fowler, P.; Grob, K.; Gürtler, R.; Husøy, T.; Sirpa, K. European Food Safety Authority (EFSA) Safety assessment of the substance zinc oxide, nanoparticles, for use in food contact materials. EFSA J. 2016, 14, 4408. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach. Resour. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Yuvakkumar, R.; Suresh, J.; Nathanael, A.J.; Sundrarajan, M.; Hong, S.I. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater. Sci. Eng. C 2014, 41, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Nava, O.J.; Soto-Robles, C.A.; Gómez-Gutiérrez, C.M.; Vilchis-Nestor, A.R.; Castro-Beltrán, A.; Olivas, A.; Luque, P.A. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 2017, 1147, 1–6. [Google Scholar] [CrossRef]
- Alves, M.M.; Andrade, S.M.; Grenho, L.; Fernandes, M.H.; Santos, C.; Montemor, M.F. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. Mater. Sci. Eng. C 2019, 101, 76–87. [Google Scholar] [CrossRef]
- Akbar, A.; Anal, A.K. Zinc oxide nanoparticles loaded active packaging, a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 2014, 38, 88–95. [Google Scholar] [CrossRef]
- Al-Naamani, L.; Dobretsov, S.; Dutta, J. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov. Food Sci. Emerg. Technol. 2016, 38, 231–237. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M.; Coma, V. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int. J. Biol. Macromol. 2017, 99, 530–538. [Google Scholar] [CrossRef]
- Zhang, H.; Hortal, M.; Jordá-Beneyto, M.; Rosa, E.; Lara-Lledo, M.; Lorente, I. ZnO-PLA nanocomposite coated paper for antimicrobial packaging application. LWT - Food Sci. Technol. 2017, 78, 250–257. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kamkar, A.; Misaghi, A.; Zunabovic-Pichler, M.; Fatehi, S. Nanocomposite films with CMC, okra mucilage, and ZnO nanoparticles: Extending the shelf-life of chicken breast meat. Food Packag. Shelf Life 2019, 21, 100330. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S.; Prodpran, T.; Sumpavapol, P.; Songtipya, P. Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll. 2014, 41, 265–273. [Google Scholar] [CrossRef]
- Ejaz, M.; Arfat, Y.A.; Mulla, M.; Ahmed, J. Zinc oxide nanorods/clove essential oil incorporated Type B gelatin composite films and its applicability for shrimp packaging. Food Packag. Shelf Life 2018, 15, 113–121. [Google Scholar] [CrossRef]
- Fidelis, M.; de Moura, C.; Junior, T.K.; Pap, N.; Mattila, P.; Mäkinen, S.; Putnik, P.; Kovačević, D.B.; Tian, Y.; Yang, B. Granato Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019, 24, 3854. [Google Scholar] [CrossRef] [Green Version]
- Homrich, A.S.; Galvão, G.; Abadia, L.G.; Carvalho, M.M. The circular economy umbrella: Trends and gaps on integrating pathways. J. Clean. Prod. 2018, 175, 525–543. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Rigo, A.; Tonon, D.; Mattivi, F. Quantitation of Polyphenols in Different Apple Varieties. J. Agric. Food Chem. 2004, 52, 6532–6538. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 2017, 109, 1219–1231. [Google Scholar] [CrossRef]
- Ortez, J.H. Disk diffusion testing. In Manual Of Antimicrobial Susceptibility Testing; Coyle, M.B., Ed.; American Society for Microbiology: Washington, DC, USA, 2005; pp. 39–52. [Google Scholar]
- AOAC Official Methods of Analysis of the Association of Official Analytical Chemists, 20th ed.; AOAC: Washington, DC, USA, 2016.
- ISO 4833-1:2013. Microbiology of the food chain -- Horizontal method for the enumeration of microorganisms -- Part 1: Colony count at 30 degrees C by the pour plate technique. 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 27 January 2020).
- ISO 17410:2019. Microbiology of the food chain — Horizontal method for the enumeration of psychrotrophic microorganisms. 2001. Available online: https://www.iso.org/standard/67437.html (accessed on 27 January 2020).
- ISO 21528-2:2017. Microbiology of the food chain — Horizontal method for the detection and enumeration of Enterobacteriaceae — Part 2: Colony-count technique. Available online: https://www.iso.org/standard/63504.html (accessed on 27 January 2020).
- Vandecasteele, C.; Block, C.B. Modern Methods for Trace Element Determination; Wiley: Hoboken, NJ, USA, 1997; ISBN 978-0-471-97445-1. [Google Scholar]
- Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ros-mediated cell injury. Adv. Funct. Mater. 2009, 19, 842–852. [Google Scholar] [CrossRef]
- Rahman, P.M.; Mujeeb, V.M.A.; Muraleedharan, K. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. Int. J. Biol. Macromol. 2017, 97, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Altiok, D.; Altiok, E.; Tihminlioglu, F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J. Mater. Sci. Mater. Med. 2010, 21, 2227–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Soares, F.; Pires, A.C.; Camilloto, G.P.; Santiago-Silva, P.; Espitia, P.J.; Silva, W.A. Recent patents on active packaging for food application. Recent Pat. Food. Nutr. Agric. 2009, 1, 171–178. [Google Scholar] [CrossRef]
- Shankar, S.; Teng, X.; Li, G.; Rhim, J.W. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll. 2015, 45, 264–271. [Google Scholar] [CrossRef]
- Kolakowska, A.; Bartosz, G. Oxidation of Food Components: An Introduction. In Food Oxidants and Antioxidants Chemical, Biological and Functional Properties; Bartosz, G., Ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 550. ISBN 13: 978-1-4398-8242-9. [Google Scholar]
- Petrou, S.; Tsiraki, M.; Giatrakou, V.; Savvaidis, I.N. Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. Int. J. Food Microbiol. 2012, 156, 264–271. [Google Scholar] [CrossRef]
- Riaz, A.; Lei, S.; Akhtar, H.M.S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M.M.; Zeng, X. Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Baek, S.K.; Song, K. Bin Development of Gracilaria vermiculophylla extract films containing zinc oxide nanoparticles and their application in smoked salmon packaging. LWT - Food Sci. Technol. 2018, 89, 269–275. [Google Scholar] [CrossRef]
- Panea, B.; Ripoll, G.; González, J.; Fernández-Cuello, Á.; Albertí, P. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J. Food Eng. 2014, 123, 104–112. [Google Scholar] [CrossRef]
- MINOLTA PRECISE COLOR COMMUNICATION: color control from perception to instrumentation; Minolta Co. Ltda.: Tokyo, Japan, 2007; Available online: https://www.konicaminolta.com/instruments/knowledge/color/pdf/color_communication.pdf (accessed on 27 January 2020).
- Rojas, M.C.; Brewer, M.S. Effect of Natural Antioxidants on Oxidative Stability of Frozen, Vacuum-Packaged Beef and Pork. J. Food Qual. 2008, 31, 173–188. [Google Scholar] [CrossRef]
- Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M.A.; Ahmadi Gavlighi, H.; Gardini, F. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. Int. J. Biol. Macromol. 2017, 102, 19–28. [Google Scholar] [CrossRef]
- Suo, B.; Li, H.; Wang, Y.; Li, Z.; Pan, Z.; Ai, Z. Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage. J. Sci. Food Agric. 2016, 97, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S. Pale, soft, and exudative poultry meat--Reviewing ways to manage at the processing plant. Poult. Sci. 2009, 88, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- De Melo, A.A.M.; Geraldine, R.M.; Silveira, M.F.A.; Lopes, M.C.; Silva, C.; Fernandes, T.H.; Oliveira, A.N. De Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil. Brazilian J. Microbiol. 2012, 1419–1427. [Google Scholar] [CrossRef]
- Khulal, U.; Zhao, J.; Hu, W.; Chen, Q. Intelligent evaluation of total volatile basic nitrogen (TVB-N) content in chicken meat by an improved multiple level data fusion model. Sensors Actuators B Chem. 2017, 238, 337–345. [Google Scholar] [CrossRef]
- IFT. Chapter 3: Factors that Influence Microbial Growth. Compr. Rev. Food Sci. Food Saf. 2003, 21–32. [Google Scholar] [CrossRef]
- Economou, T.; Pournis, N.; Ntzimani, A.; Savvaidis, I.N. Nisin-EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life. Food Chem. 2009, 114, 1470–1476. [Google Scholar] [CrossRef]
- The commision of the european communities COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs; Elsevier: Amsterdam, The Netherlands, 2005; Vol. L338, Available online: https://www.fsai.ie/uploadedFiles/Consol_Reg2073_2005.pdf (accessed on 27 January 2020).
- Emamifar, A.; Kadivar, M.; Shahedi, M.; Soleimanian-Zad, S. Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov. Food Sci. Emerg. Technol. 2010, 11, 742–748. [Google Scholar] [CrossRef]
- Emamifar, A.; Mohammadizadeh, M. Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technol. Biotechnol. 2015, 53, 488–495. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Rezaei Mokarram, R.; Hashemi, M. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packag. Shelf Life 2017, 11, 106–114. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- INSA PortFIR - composition of poultry meat (chicken breast without skin). Available online: http://portfir.insa.pt/foodcomp/pdf?904 (accessed on 27 January 2020).
- Bumbudsanpharoke, N.; Ko, S. Nano-Food Packaging: An Overview of Market, Migration Research, and Safety Regulations. J. Food Sci. 2015, 80, R910–R923. [Google Scholar] [CrossRef]
- Croteau, M.-N.; Dybowska, A.D.; Luoma, S.N.; Valsami-Jones, E. A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures. Nanotoxicology 2011, 5, 79–90. [Google Scholar] [CrossRef]
Parameter | Day | Unwrapped | Ch | Ch + 0.5% ZnO NPs | Ch + 1% ZnO NPs | Ch + 2% ZnO NPs |
---|---|---|---|---|---|---|
TBARS (mg Malonaldehyde/kg meat) | 0 | 0.039 ± 0.015 aC | 0.039 ± 0.015 aC | 0.039 ± 0.015 aB | 0.039 ± 0.015 aB | 0.039 ± 0.015 aB |
2 | 0.033 ± 0.013 aC | 0.060 ± 0.022 aC | 0.041 ± 0.014 aB | 0.037 ± 0.006 aB | 0.033 ± 0.022 aB | |
4 | 0.213 ± 0.144 aB | 0.043 ± 0.005 bC | 0.032 ± 0.008 bB | 0.046 ± 0.008 bB | 0.037 ± 0.005 bB | |
7 | 0.640 ± 0.012 aA | 0.109 ± 0.016 bB | 0.143 ± 0.086 bA | 0.095 ± 0.015 bA | 0.121 ± 0.014 bA | |
11 | 0.496 ± 0.157 aAB | 0.480 ± 0.283 aA | 0.123 ± 0.047 bA | 0.104 ± 0.042 bA | 0.110 ± 0.005 bA | |
Hue angle (°) | 0 | 58.9 ± 0.5 aC | 58.9 ± 0.5 aC | 58.9 ± 0.5 aAB | 58.9 ± 0.5 aC | 58.9 ± 0.5 aC |
2 | 61.4 ± 1.0 aBC | 63.8 ± 0.1 bcA | 62.5 ± 0.4 abA | 64.7 ± 0.1 cdA | 65.3 ± 0.1 dA | |
4 | 60.8 ± 1.0 aBC | 60.6 ± 0.1 aB | 61.7 ± 1.5 aA | 61.2 ± 0.3 aB | 60.1 ± 0.3 aB | |
7 | 63.6 ± 2.1 aAB | 57.7 ± 0.2 bD | 57.3 ± 0.0 bB | 56.7 ± 0.3 bD | 56.7 ± 0.1 bD | |
11 | 65.7 ± 0.7 aA | 58.4 ± 0.5 bcCD | 60.6 ± 2.7 bAB | 59.3 ± 0.2 bcC | 56.1 ± 0.1 cD | |
pH | 0 | 6.13 ± 0.03 aC | 6.13 ± 0.03 aE | 6.13 ± 0.03 aC | 6.13 ± 0.03 aD | 6.13 ± 0.03 aD |
2 | 6.13 ± 0.04 cC | 6.26 ± 0.01 aD | 6.25 ± 0.02 abC | 6.20 ± 0.01 bD | 6.20 ± 0.02 bD | |
4 | 7.07 ± 0.11 aB | 6.68 ± 0.08 bcC | 6.96 ± 0.23 abB | 6.49 ± 0.05 cC | 6.54 ± 0.04 cC | |
7 | 7.31 ± 0.23 aB | 6.81 ± 0.01 bB | 7.21 ± 0.14 abAB | 6.84 ± 0.18 bB | 6.84 ± 0.15 bB | |
11 | 7.91 ± 0.02 aA | 7.51 ± 0.02 bA | 7.39 ± 0.07 bA | 7.36 ± 0.11 bA | 7.09 ± 0.05 cA | |
Titratable acidity (% oleic acid equivalent) | 0 | 0.73 ± 0.05 aAB | 0.73 ± 0.05 aA | 0.73 ± 0.05 aA | 0.73 ± 0.05 aA | 0.73 ± 0.05 aA |
2 | 0.56 ± 0.06 abAB | 0.65 ± 0.09 aAB | 0.56 ± 0.06 abBC | 0.45 ± 0.06 bA | 0.53 ± 0.04 abA | |
4 | 0.53 ± 0.15 aB | 0.54 ± 0.10 aB | 0.62 ± 0.04 aAB | 0.67 ± 0.06 aA | 0.57 ± 0.15 aA | |
7 | 0.66 ± 0.16 abAB | 0.55 ± 0.00 bAB | 0.48 ± 0.03 bC | 0.81 ± 0.02 aA | 0.64 ± 0.09 abA | |
11 | 0.85 ± 0.08 aA | 0.55 ± 0.05 aB | 0.56 ± 0.00 aBC | 0.77 ± 0.33 aA | 0.66 ± 0.05 aA | |
Total volatile basic nitrogen (mg/kg meat) | 0 | 47 ± 18 aC | 47 ± 18 aBC | 47 ± 18aB | 47 ± 18 aC | 47 ± 18aB |
2 | 11 ± 2 bC | 29 ± 5 aC | 27 ± 4 aB | 57 ± 35 aC | 22 ± 2aB | |
4 | 145 ± 7 aB | 80 ± 4 bAB | 63 ± 6 bB | 77 ± 15 bBC | 61 ± 23 bB | |
7 | 205 ± 28 aA | 78 ± 14bAB | 117 ± 25 bA | 124 ± 3bAB | 125 ± 7bA | |
11 | 130 ± 6 aB | 114 ± 26 abA | 70 ± 0 bB | 135 ± 13 aA | 133 ± 34 aA | |
Moisture (%) | 0 | 74.5 ± 0.7 aC | 74.5 ± 0.7 aA | 74.5 ± 0.7 aA | 74.5 ± 0.7 aA | 74.5 ± 0.7aA |
2 | 75.1 ± 0.1 aBC | 73.0 ± 0.0 cB | 73.7 ± 0.2 bAB | 73.6 ± 0.3 bA | 74.0 ± 0.0 bB | |
4 | 75.6 ± 0.1 aAB | 73.2 ± 0.7bcB | 72.9 ± 0.2 cAB | 74.0 ± 0.5 bA | 73.4 ± 0.1 bcB | |
7 | 75.9 ± 0.3 aAB | 73.1 ± 0.1 aB | 72.7 ± 0.5 aB | 74.0 ± 7.0 aA | 74.1 ± 0.4 aAB | |
11 | 76.5 ± 0.2aA | 74.0 ± 0.1 bcAB | 72.5 ± 1.1 cB | 73.7 ± 1.1 bcA | 75.0 ± 0.3 abA |
Parameter | Day | Unwrapped | Ch | Ch + 0.5% ZnO NPs | Ch + 1% ZnO NPs | Ch + 2% ZnO NPs |
---|---|---|---|---|---|---|
Total psychrotrophic aerobic microorganisms (Log CFU/g meat) | 0 | 3.81 ± 0.38 aD | 3.81 ± 0.38 aD | 3.81 ± 0.38 aE | 3.81 ± 0.38 aD | 3.81 ± 0.38 aD |
2 | 6.70 ± 0.04 aC | 5.48 ± 0.40 bC | 6.13 ± 0.25 abD | 5.88 ± 0.01 bC | 5.70 ± 0.43 bC | |
4 | 9.30 ± 0.21 aB | 7.42 ± 0.01 bcB | 7.39 ± 0.04 bcC | 7.15 ± 0.08 cB | 7.58 ± 0.02 bB | |
7 | 9.87 ± 0.03 aA | 8.87 ± 0.08 bA | 8.75 ± 0.09 bB | 9.00 ± 0.24 bA | 9.00 ± 0.38 bA | |
11 | 9.79 ± 0.13 aAB | 7.96 ± 0.01 bB | 9.36 ± 0.03 aA | 8.90 ± 0.94 abA | 9.52 ± 0.52 aA | |
Total mesophilic aerobic microorganisms (Log CFU/g meat) | 0 | 3.46 ± 0.33 aC | 3.46 ± 0.33 aD | 3.46 ± 0.33 aE | 3.46 ± 0.33 aE | 3.46 ± 0.33 aD |
2 | 6.07 ± 0.29 aB | 5.35 ± 0.32 aC | 6.11 ± 0.37 aD | 5.73 ± 0.02 aD | 5.44 ± 0.33 aC | |
4 | 9.25 ± 0.25 aA | 7.34 ± 0.06 bB | 7.41 ± 0.05 bC | 7.02 ± 0.23 bC | 7.42 ± 0.07 bB | |
7 | 9.73 ± 0.04 aA | 8.69 ± 0.17 bA | 8.62 ± 0.05 bB | 9.00 ± 0.26 bB | 8.90 ± 0.46 bA | |
11 | 9.79 ± 0.16 aA | 8.58 ± 0.33 bA | 9.25 ± 0.09 abA | 9.66 ± 0.02 aA | 9.48 ± 0.57 aA | |
Enterobacteriaceae (Log CFU/g meat) | 0 | 3.68 ± 0.10 aE | 3.68 ± 0.10 aB | 3.68 ± 0.10 aBC | 3.68 ± 0.10 aB | 3.68 ± 0.10 aB |
2 | 4.32 ± 0.24 aD | 2.86 ± 0.06 bC | 3.42 ± 0.53 bBC | 3.32 ± 0.15 bB | 3.37 ± 0.15 bB | |
4 | 4.75 ± 0.09 aC | 2.93 ± 0.37 bC | 2.89 ± 0.63 bC | 1.46 ± 0.50 cC | 2.38 ± 0.42 bcB | |
7 | 5.82 ± 0.13 aB | 3.48 ± 0.01 bB | 4.08 ± 0.16 bB | 3.85 ± 0.53 bB | 3.70 ± 1.13 bB | |
11 | 7.22 ± 0.01 aA | 5.40 ± 0.18 cA | 5.56 ± 0.02 bcA | 5.37 ± 0.06 cA | 5.67 ± 0.04 bA |
Sample | Zinc Content (mg Zn/kg Fresh Meat) | % Diffused (mg Zn Diffused/Maximum Incorporated) |
---|---|---|
Initial zinc content – day 0 | 13.2 ± 3.4C | – |
Unwrapped – day 11 | 13.3 ± 0.9C | – |
Chitosan – day 11 | 18.1 ± 0.2C | – |
Ch+0.5% ZnO NP – day 11 | 44.9 ± 1.1B | 92.9% |
Ch+1.0% ZnO NP – day 11 | 40.9 ± 0.5B | 39.4% |
Ch+2.0% ZnO NP – day 11 | 61.6 ± 7.5A | 37.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, V.G.L.; Rodrigues, C.; Valente, S.; Pimenta, C.; Pires, J.R.A.; Alves, M.M.; Santos, C.F.; Coelhoso, I.M.; Fernando, A.L. Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat. Coatings 2020, 10, 110. https://doi.org/10.3390/coatings10020110
Souza VGL, Rodrigues C, Valente S, Pimenta C, Pires JRA, Alves MM, Santos CF, Coelhoso IM, Fernando AL. Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat. Coatings. 2020; 10(2):110. https://doi.org/10.3390/coatings10020110
Chicago/Turabian StyleSouza, Victor Gomes Lauriano, Carolina Rodrigues, Sara Valente, Catarina Pimenta, João Ricardo Afonso Pires, Marta M. Alves, Catarina F. Santos, Isabel M. Coelhoso, and Ana Luísa Fernando. 2020. "Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat" Coatings 10, no. 2: 110. https://doi.org/10.3390/coatings10020110
APA StyleSouza, V. G. L., Rodrigues, C., Valente, S., Pimenta, C., Pires, J. R. A., Alves, M. M., Santos, C. F., Coelhoso, I. M., & Fernando, A. L. (2020). Eco-Friendly ZnO/Chitosan Bionanocomposites Films for Packaging of Fresh Poultry Meat. Coatings, 10(2), 110. https://doi.org/10.3390/coatings10020110