Infrared Absorption Study of Zn–S Hybrid and ZnS Ultrathin Films Deposited on Porous AAO Ceramic Support
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wetzig, K.; Schneider, C.M. Metal Based Thin Films for Electronics, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Piegari, A.; Flory, F. Optical Thin Films and Coatings: From Materials to Applications, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Grandin, G.M.; Textor, M. Intelligent Surfaces in Biotechnology: Scientific and Engineering Concepts, Enabling Technologies, and Translation to Bio-Oriented Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Knez, M.; Nielsch, K.; Niinisto, L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Adv. Mater. 2007, 19, 3425–3438. [Google Scholar] [CrossRef]
- Wang, K.X.; Yu, Z.; Liu, V.; Cui, Y.; Fan, S. Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings. Nano Lett. 2012, 12, 1616–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, R.; Saraswat, K. Limitation of Optical Enhancement in Ultra-thin Solar Cells Imposed by Contact Selectivity. Sci. Rep. 2018, 8, 8863. [Google Scholar] [CrossRef] [PubMed]
- Tchoe, Y.; Chung, K.; Lee, K.; Jo, J.; Chung, K.; Hyun, J.K.; Kim, M.; Yi, G.-C. Free-standing and ultrathin inorganic light-emitting diode array. NPG Asia Mater. 2019, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Youngquist, R.C.; Nurge, M.A.; Fisher, B.H.; Malocha, D.C. A Resistivity Model for Ultrathin Films and Sensors. IEEE Sens. J. 2014, 15, 2412–2418. [Google Scholar] [CrossRef]
- Sundberg, P.; Karppinen, M. Organic and inorganic–organic thin film structures by molecular layer deposition: A review. Beilstein J. Nanotechnol. 2014, 5, 1104–1136. [Google Scholar] [CrossRef]
- Zhao, J.; Bradbury, C.R.; Huclova, S.; Potapova, I.; Carrara, M.; Fermin, D.J. Nanoparticle-Mediated Electron Transfer Across Ultrathin Self-Assembled Films. J. Phys. Chem. B 2005, 109, 22985–22994. [Google Scholar] [CrossRef]
- Tang, C.; Yan, Z.; Wang, Q.; Chen, J.; Zhu, M.; Liu, B.; Liu, F.; Sui, C. Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers. RSC Adv. 2015, 5, 81866–81874. [Google Scholar] [CrossRef]
- Koh, Y.P.; McKenna, G.B.; Simon, S.L. Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 3518–3527. [Google Scholar] [CrossRef]
- Harada, K.; Sugimoto, T.; Kato, F.; Watanabe, K.; Matsumoto, Y. Thickness dependent homogeneous crystallization of ultrathin amorphous solid water films. Phys. Chem. Chem. Phys. 2020, 22, 1963–1973. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhao, Z.; Wu, K.; Huang, R.; Liu, T.; Jiang, H.; Chen, F.; Fu, Q. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J. Mater. Chem. C 2017, 5, 3748–3756. [Google Scholar] [CrossRef]
- Hoffmann, F.M.; Levinos, N.J.; Perry, B.N.; Rabinowitz, P. High-resolution infrared reflection absorption spectroscopy with a continuously tunable infrared laser: CO on Ru(001). Phys. Rev. B 1986, 33, 4309–4311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, E.Y. Advanced FT-IR Spectroscopy; Thermo Electron Corporation: Madison, WI, USA, 2003; p. 58. [Google Scholar]
- Wang, C.; Zheng, J.; Zhao, L.; Rastogi, V.K.; Shah, S.S.; DeFrank, J.J.; Leblanc, R.M. Infrared reflection-absorption spectroscopy and polarization-modulated infrared reflection-absorption spectroscopy studies of the organophoshorus aicd anhydrolase langmuir monolayer. J. Phys. Chem. B 2008, 112, 5250–5256. [Google Scholar] [CrossRef] [PubMed]
- Monyoncho, E.; Zamlynny, V.; Woo, T.K.; Baranova, E.A. The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: New data processing and presentation approach. Analytics 2018, 143, 2563–2573. [Google Scholar] [CrossRef]
- Baldassarre, M.; Barth, A. Pushing the detection limit of infrared spectroscopy for structural analysis of dilute protein samples. Analytics 2014, 139, 5393–5399. [Google Scholar] [CrossRef]
- Andersen, A.; Yamada, S.; Pramodkumar, E.; Andresen, T.L.; Boisen, A.; Schmid, S. Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials. Sensors Actuators B Chem. 2016, 233, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Larsen, T.; Schmid, S.; Villanueva, L.G.; Boisen, A. Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators. ACS Nano 2013, 7, 6188–6193. [Google Scholar] [CrossRef]
- Ko, D.; Kim, S.; Jin, Z.; Shin, S.; Lee, S.Y.; Min, Y.-S. A Novel Chemical Route to Atomic Layer Deposition of ZnS Thin Film from Diethylzinc and 1,5-Pentanedithiol. Bull. Korean Chem. Soc. 2017, 38, 696–699. [Google Scholar] [CrossRef]
- Włodarski, M.; Chodorow, U.; Jóźwiak, S.; Putkonen, M.; Durejko, T.; Sajavaara, T.; Norek, M. Structural and Optical Characterization of ZnS Ultrathin Films Prepared by Low-Temperature ALD from Diethylzinc and 1.5-Pentanedithiol after Various Annealing Treatments. Materials 2019, 12, 3212. [Google Scholar] [CrossRef] [Green Version]
- Horcas, I.; Fernández, R.; Gomez-Rodriguez, J.M.; Colchero, J.W.; Gómez-Herrero, J.W.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instruments 2007, 78, 13705. [Google Scholar] [CrossRef] [PubMed]
- Harding, D.R.; Goodrich, H.; Caveglia, A.; Anthamatten, M. Effect of temperature and volume on the tensile and adhesive properties of photocurable resins. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 936–945. [Google Scholar] [CrossRef]
- Ofoegbu, S.U.; Fernandes, F.A.O.; Pereira, A.B. The Sealing Step in Aluminum Anodizing: A Focus on Sustainable Strategies for Enhancing Both Energy Efficiency and Corrosion Resistance. Coatings 2020, 10, 226. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Thompson, G.; Wood, G.; Bethune, B. Anion incorporation and migration during barrier film formation on aluminium. Corros. Sci. 1987, 27, 83–102. [Google Scholar] [CrossRef]
- Qu, H.; Cao, L.; Su, G.; Liu, W.; Gao, R.; Xia, C.; Qin, J. Silica-coated ZnS quantum dots as fluorescent probes for the sensitive detection of Pb2+ ions. J. Nanoparticle Res. 2014, 16, 2762. [Google Scholar] [CrossRef]
- Kharazmi, A.; Faraji, N.; Hussin, R.M.; Saion, E.; Yunus, W.M.M.; Behzad, K. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach. Beilstein J. Nanotechnol. 2015, 6, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Xaba, T.; Moloto, M.J.; Al-Shakban, M.; Malik, M.A.; O’Brien, P.; Moloto, M.J. The influences of the concentrations of “green capping agents” as stabilizers and of ammonia as an activator in the synthesis of ZnS nanoparticles and their polymer nanocomposites. Green Process. Synth. 2017, 6, 173–182. [Google Scholar] [CrossRef]
- Shanmugam, N.; Cholan, S.; Viruthagiri, G.; Gobi, R.; Kannadasan, N. Synthesis and characterization of Ce3+-doped flowerlike ZnS nanorods. Appl. Nanosci. 2013, 4, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Estévez-Hernández, O.; Hernandez, M.P.P.; Farías, M.H.; Rodríguez-Hernández, J.; Gonzalez, M.M.; Reguera, E. Effect of Co-Doping on the Structural, Electronic and Magnetic Properties of CoxZn1–xO Nanoparticles. Mater. Focus 2017, 6, 371–381. [Google Scholar] [CrossRef]
- ChemicalBook. Available online: https://www.chemicalbook.com/SpectrumEN_928-98-3_IR1.htm (accessed on 12 January 2020).
- Öztürk, N.; Çırak, Ç.; Bahçeli, S. FT-IR Spectroscopic Study of 1,5-Pentanedithiol and 1,6-Hexanedithiol Adsorbed on NaA, CaA and NaY Zeolites. Zeitschrift für Naturforschung A 2014, 60, 633–636. [Google Scholar] [CrossRef]
- Segala, K.; Dutra, R.L.; Franco, C.V.; Pereira, A.S.; Trindade, T. In Situ and Ex Situ Preparations of ZnO/Poly-{trans-[RuCl2(vpy)4]/styrene} Nanocomposites. J. Braz. Chem. Soc. 2010, 21, 1986–1991. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Mashaykhi, S.; Babaei, S. Graphene oxide/zinc oxide nanocomposite: A superior adsorbent for removal of methylene blue—Statistical analysis by response surface methodology (RSM). South Afr. J. Chem. 2016, 69, 105–112. [Google Scholar] [CrossRef]
- Gärd, R.; Sun, Z.-X.; Forsling, W. FT-IR and FT-Raman Studies of Colloidal ZnS. J. Colloid Interface Sci. 1995, 169, 393–399. [Google Scholar] [CrossRef]
- Thottoli, A.K.; Achuthanunni, A.K. Effect of polyvinyl alcohol concentration on the ZnS nanoparticles and wet chemical synthesis of wurtzite ZnS nanoparticles. J. Nanostructure Chem. 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Pandey, B.K.; Sukla, A.; Sinha, A.K.; Gopal, R. Synthesis and Characterization of Cobalt Oxalate Nanomaterial for Li-Ion Battery. Mater. Focus 2015, 4, 333–337. [Google Scholar] [CrossRef]
- Mote, V.D.; Purushotham, Y.; Dole, B.N. Structural, morphological and optical properties of Mn doped ZnS nanocrystals. Cerâmica 2013, 59, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Kim, M.; Lian, G.; Johnson, M.B.; Peng, X. Side Reactions in Controlling the Quality, Yield, and Stability of High Quality Colloidal Nanocrystals. J. Am. Chem. Soc. 2005, 127, 13331–13337. [Google Scholar] [CrossRef]
- Zenobi, M.C.; Luengo, C.; Avena, M.J.; Rueda, E.H. An ATR-FTIR study of different phosphonic acids in aqueous solution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 270–276. [Google Scholar] [CrossRef]
- Gong, W. A real time in situ ATR-FTIR spectroscopic study of linear phosphate adsorption on titania surfaces. Int. J. Miner. Process. 2001, 63, 147–165. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Chen, F.; Yang, X. Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Prog. Nat. Sci. 2014, 24, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Onija, O.; Borodi, G.; Kacso, I.; Pop, M.N.; Dadarlat, D.; Bratu, I.; Jumate, N.; Lazar, M.D. Preparation and characterization of urea-oxalic acid solid form. Process. Isotopes Mol. PIM 2012, 35, 35–38. [Google Scholar] [CrossRef]
- Pan, Y.-T.; Wang, D.-Y. Fabrication of low-fire-hazard flexible poly (vinyl chloride) via reutilization of heavy metal biosorbents. J. Hazard. Mater. 2017, 339, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Varghese, M.; Jochan, J.; Sabu, J.; Varughese, P.A.; Abraham, K.E. Spectral properties of cadmium malonate crystals grown in hydrosilica gel. Ind. J. Pure Appl. Phys. 2009, 47, 691–695. [Google Scholar]
- de Azevedo, W.M.; de Oliveira, G.B.; da Silva, E.F., Jr.; Khoury, H.J.; Oliveira de Jesus, E.F. Highly sensitive thermoluminescent carbon doped nanoporous aluminum oxide detectors. Radiat. Protect. Dosimet. 2006, 119, 201–205. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarski, M.; Putkonen, M.; Norek, M. Infrared Absorption Study of Zn–S Hybrid and ZnS Ultrathin Films Deposited on Porous AAO Ceramic Support. Coatings 2020, 10, 459. https://doi.org/10.3390/coatings10050459
Włodarski M, Putkonen M, Norek M. Infrared Absorption Study of Zn–S Hybrid and ZnS Ultrathin Films Deposited on Porous AAO Ceramic Support. Coatings. 2020; 10(5):459. https://doi.org/10.3390/coatings10050459
Chicago/Turabian StyleWłodarski, Maksymilian, Matti Putkonen, and Małgorzata Norek. 2020. "Infrared Absorption Study of Zn–S Hybrid and ZnS Ultrathin Films Deposited on Porous AAO Ceramic Support" Coatings 10, no. 5: 459. https://doi.org/10.3390/coatings10050459
APA StyleWłodarski, M., Putkonen, M., & Norek, M. (2020). Infrared Absorption Study of Zn–S Hybrid and ZnS Ultrathin Films Deposited on Porous AAO Ceramic Support. Coatings, 10(5), 459. https://doi.org/10.3390/coatings10050459