Amphiphilic Poly(vinyl Alcohol) Copolymers Designed for Optical Sensor Applications—Synthesis and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PVA Copolymers
2.2. Deposition of Thin Films
2.3. Characterization of Thin Films
3. Results
3.1. Characterization of Synthesized Polymers
3.2. Optimization of Thickness and Post-Deposition Annealing
3.3. Humidity Sensing Using Transmittance Measurements
3.4. Doping with SiO2 Particles
3.5. Color Sensing of Humidity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finch, C.A. (Ed.) Polyvinyl Alcohol: Developments, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 1992; ISBN 978-0-471-99850-1. [Google Scholar]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Yuan, Q.; Fang, L.; Gan, X.; Zhao, J. High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity. Opt. Lett. 2016, 41, 5515–5518. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.D.; Karmakar, N.; Winther-Jensen, B. Polyvinyl-alcohol (PVA)-based RF humidity Sensor in microwave frequency. Prog. Electromagn. Res. B 2013, 54, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.H.; Han, J.I. Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sensors Actuators A Phys. 2017, 261, 268–273. [Google Scholar] [CrossRef]
- Ogura, K.; Patil, R.C.; Shiigi, H.; Tonosaki, T.; Nakayama, M. Response of Protonic Acid-Doped Poly(o-Anisidine)/Poly(Vinyl Alcohol) Composites to Relative Humidity and Role of Dopant Anions. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 4343–4352. [Google Scholar] [CrossRef]
- Alam, S.; Islam, T.; Mittal, U. A Sensitive Inexpensive SAW Sensor for Wide Range Humidity Measurement. IEEE Sens. J. 2020, 20, 546–551. [Google Scholar] [CrossRef]
- Lin, H.; Liu, F.; Dai, Y.; Mumtaz, F. Relative humidity sensor based on FISM-SMS fiber structure coated with PVA film. Optik 2020, 207, 164320. [Google Scholar] [CrossRef]
- Tong, R.-J.; Zhao, Y.; Zheng, H.-K.; Xia, F. Simultaneous measurement of temperature and relative humidity by compact Mach-Zehnder interferometer and Fabry-Perot interferometer. Measurement 2020, 155, 107499. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, R.-J.; Chen, M.-Q.; Xia, F. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sens. Actuators B Chem. 2019, 284, 96–102. [Google Scholar] [CrossRef]
- Tong, R.-J.; Zhao, Y.; Chen, M.-Q.; Peng, Y. Multimode interferometer based on no-core fiber with GQDs-PVA composite coating for relative humidity sensing. Opt. Fiber Technol. 2019, 48, 242–247. [Google Scholar] [CrossRef]
- Mallakpour, S.; Abdolmaleki, A.; Khalesi, Z. Fabrication and physicochemical features study of crosslinked PVA/FGO nanocomposite films. Polym. Bull. 2018, 75, 1473–1486. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, R.; Li, C.; Yang, X.; Li, H.; Lin, J.; Zhou, X.; Lv, R. A fast-response and highly linear humidity sensor based on quartz crystal microbalance. Sens. Actuators B Chem. 2019, 283, 659–665. [Google Scholar] [CrossRef]
- Yang, H.; Pan, L.; Han, Y.; Ma, L.; Li, Y.; Xu, H.; Zhao, J. A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure. Appl. Surf. Sci. 2017, 423, 421–425. [Google Scholar] [CrossRef]
- Li, Y.; Deng, C.; Yang, M. A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity. Sens. Actuators B Chem. 2012, 165, 7–12. [Google Scholar] [CrossRef]
- Bhadra, J.; Popelka, A.; Abdulkareem, A.; Lehocky, M.; Humpolicek, P.; Al-Thani, N. Effect of humidity on the electrical properties of the silver-polyaniline/polyvinyl alcohol nanocomposites. Sens. Actuators A Phys. 2019, 288, 47–54. [Google Scholar] [CrossRef]
- Mahapure, P.D.; Gangal, S.A.; Aiyer, R.C.; Gosavi, S.W. Combination of polymeric substrates and metal–polymer nanocomposites for optical humidity sensors. J. Appl. Polym. Sci. 2019, 136, 47035. [Google Scholar] [CrossRef]
- Christova, D.; Ivanova, S.; Ivanova, G. Water-soluble temperature-responsive poly(viny1 alcohol-co-vinyl acetal)s. Polym. Bull. 2003, 50, 367–372. [Google Scholar] [CrossRef]
- Farmer, P.H.; Jemmott, B.A. Polyvinyl Acetal Adhesives. In Handbook of Adhesives; Skeist, I., Ed.; Springer: Boston, MA, USA, 1990; pp. 423–436. [Google Scholar]
- Lazarova, K.; Bozhilova, S.; Christova, D.; Babeva, T. Poly(vinyl alcohol)—Based thin films for optical sensing of humidity. J. Phys. Conf. Ser. 2020, in press. [Google Scholar]
- Lazarova, K.; Bozhilova, S.; Ivanova, S.; Christova, D.; Babeva, T. The Influence of Annealing on Optical and Humidity Sensing Properties of Poly(Vinyl Alcohol-Co-Vinyl Acetal) Thin Films. Proceedings 2020, 42, 16. [Google Scholar] [CrossRef] [Green Version]
- Schubert, U. Chemistry and Fundamentals of the Sol–Gel Process. In The Sol–Gel Handbook: Synthesis, Characterization, and Applications, 1st ed.; Levy, D., Zayat, M., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2015; pp. 3–27. [Google Scholar]
- Pingan, H.; Mengjun, J.; Yanyan, Z.; Ling, H. A silica/PVA adhesive hybrid material with high transparency, thermostability and mechanical strength. RSC Adv. 2017, 7, 2450–2459. [Google Scholar] [CrossRef] [Green Version]
- Lazarova, K.; Vasileva, M.; Marinov, G.; Babeva, T. Optical characterization of sol-gel derived Nb2O5 thin films. Opt. Laser Technol. 2014, 58, 114–118. [Google Scholar] [CrossRef]
- Lazarova, K.; Christova, D.; Georgiev, R.; Georgieva, B.; Babeva, T. Optical Sensing of Humidity Using Polymer Top-Covered Bragg Stacks and Polymer/Metal Thin Film Structures. Nanomaterials 2019, 9, 875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarova, K.; Georgiev, R.; Christova, D.; Babeva, T. Polymer Top-Covered Bragg Reflectors as Optical Humidity Sensors. Proceedings 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
Sample | Acetal Content, % (NMR) | TCP *, °C (UV-VIS) |
---|---|---|
PVA | 0 | -** |
Ac18 | 18 | 47 |
Ac19 | 19 | 40 |
Ac24 | 24 | 30 |
Ac28 | 28 | 27 |
Sample | Tpost(°C) | λmax (nm) | H (%) | Dynamic Range (% RH) |
Sensitivity (%/% RH) |
Accuracy (% RH) |
---|---|---|---|---|---|---|
PVA | 60 | 597 | 17.4 | <30 | <0.01 | >30 |
PVA | 180 | 402 | 5.6 | <75 | 0.013 | 23 |
Ac18 | 60 | 592 | 6.8 | <45 | 0.010 | 30 |
Ac18 | 180 | 400 | 4.3 | >60 | 0.07 (60%–84% RH) 0.3 (>84% RH) | 4 1 |
Ac19 | 60 | 400 | 7.8 | <40 | <0.01 | >30 |
Ac19 | 180 | 400 | 9.9 | <60 | <0.01 | >30 |
Ac24 | 60 | 408 | 3.8 | full | 0.03 (5%–65% RH) 0.14 (> 65% RH) | 10 2 |
Ac24 | 180 | 406 | 4.9 | full | 0.01 (5%–60% RH) 0.02 (60%–77% RH) 0.08 (>77% RH) | 30 15 4 |
Ac28 | 60 | 598 | 6.8 | <60 | < 0.01 | >30 |
Ac28 | 180 | 600 | 5.4 | full | 0.01 (5%–70% RH) 0.05(>70% RH) | 30 6 |
Ac24 (T%) | 60 | 460 | 3.6 | full | 0.03 (5%–70% RH) 0.14(>70% RH) | 3 0.7 |
Ac24p1 | 60 | 424 | 1.7 | full | 0.03 | 10 |
Ac24p2 | 60 | 482 | 3.9 | full | 0.02 | 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarova, K.; Bozhilova, S.; Novakov, C.; Christova, D.; Babeva, T. Amphiphilic Poly(vinyl Alcohol) Copolymers Designed for Optical Sensor Applications—Synthesis and Properties. Coatings 2020, 10, 460. https://doi.org/10.3390/coatings10050460
Lazarova K, Bozhilova S, Novakov C, Christova D, Babeva T. Amphiphilic Poly(vinyl Alcohol) Copolymers Designed for Optical Sensor Applications—Synthesis and Properties. Coatings. 2020; 10(5):460. https://doi.org/10.3390/coatings10050460
Chicago/Turabian StyleLazarova, Katerina, Silvia Bozhilova, Christo Novakov, Darinka Christova, and Tsvetanka Babeva. 2020. "Amphiphilic Poly(vinyl Alcohol) Copolymers Designed for Optical Sensor Applications—Synthesis and Properties" Coatings 10, no. 5: 460. https://doi.org/10.3390/coatings10050460
APA StyleLazarova, K., Bozhilova, S., Novakov, C., Christova, D., & Babeva, T. (2020). Amphiphilic Poly(vinyl Alcohol) Copolymers Designed for Optical Sensor Applications—Synthesis and Properties. Coatings, 10(5), 460. https://doi.org/10.3390/coatings10050460