Heat Transfer Enhancement by Shot Peening of Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Transfer of Pinned Fins
2.2. Computational Fluid Dynamics (CFD) Modeling
2.3. Convective Heat Transfer Coefficients of Different Surface Roughness
2.4. Shot Peening Finite Element (FE) Simulation
3. Results
3.1. Effects of Surface Roughness to Heat Convection
3.2. Effects of Shot Peening Parameters to Surface Roughness
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lo, K.H.; Shek, C.H.; Lai, J.K.L. Recent developments in stainless steels. Mater. Sci. Eng. R Rep. 2009, 65, 39–104. [Google Scholar] [CrossRef]
- Boillot, P.; Peultier, J. Use of Stainless Steels in the Industry: Recent and Future Developments. Procedia Eng. 2014, 83, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, A.; Khonsari, M.M. Effect of Untampered Plasma Coating and Surface Texturing on Friction and Running-in Behavior of Piston Rings. Coatings 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yang, X.; Wang, S.; Wang, Y.; Lu, C.; Cao, J. Study on Friction and Lubrication Characteristics of Surface with Unidirectional Convergence Texture. Coatings 2019, 9, 780. [Google Scholar] [CrossRef] [Green Version]
- Wos, S.; Koszela, W.; Dzierwa, A.; Pawlus, P. Friction Reduction in Unidirectional Lubricated Sliding Due to Disc Surface Texturing. Coatings 2020, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, L.R.; Bagge-Ravn, D.; Kold, J.; Gram, L. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. Int. Biodeterior. Biodegrad. 2003, 52, 175–185. [Google Scholar] [CrossRef]
- García, S.; Trueba, A.; Vega, L.M.; Madariaga, E. Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser. Biofouling 2016, 32, 1185–1193. [Google Scholar] [CrossRef]
- Baino, F.; Montealegre, M.A.; Minguella-Canela, J.; Vitale-Brovarone, C. Laser Surface Texturing of Alumina/Zirconia Composite Ceramics for Potential Use in Hip Joint Prosthesis. Coatings 2019, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Petrović, S.; Peruško, D.; Skoulas, E.; Kovač, J.; Mitrić, M.; Potočnik, J.; Rakočević, Z.; Stratakis, E. Laser-Assisted Surface Texturing of Ti/Zr Multilayers for Mesenchymal Stem Cell Response. Coatings 2019, 9, 854. [Google Scholar] [CrossRef] [Green Version]
- Jing, Q.; Zhang, D.; Xie, Y. Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. Int. J. Heat Mass Transf. 2018, 126, 169–190. [Google Scholar] [CrossRef]
- Chen, Y.; Chew, Y.T.; Khoo, B.C. Enhancement of heat transfer in turbulent channel flow over dimpled surface. Int. J. Heat Mass Transf. 2012, 55, 8100–8121. [Google Scholar] [CrossRef]
- Turnow, J.; Kasper, R.; Kornev, N. Flow structures and heat transfer over a single dimple using hybrid URANS-LES methods. Comput. Fluids 2018, 172, 720–727. [Google Scholar] [CrossRef]
- Du, W.; Luo, L.; Wang, S.; Zhang, X. Effect of the dimple location and rotating number on the heat transfer and flow structure in a pin finned channel. Int. J. Heat Mass Transf. 2018, 127, 111–129. [Google Scholar] [CrossRef]
- Zheng, L.; Xie, Y.; Zhang, D. Numerical investigation on heat transfer and flow characteristics in helically coiled mini-tubes equipped with dimples. Int. J. Heat Mass Transf. 2018, 126, 544–570. [Google Scholar] [CrossRef]
- Wang, S.; Du, W.; Luo, L.; Qiu, D.; Zhang, X.; Li, S. Flow structure and heat transfer characteristics of a dimpled wedge channel with a bleed hole in dimple at different orientations and locations. Int. J. Heat Mass Transf. 2018, 117, 1216–1230. [Google Scholar] [CrossRef]
- Xie, S.; Liang, Z.; Zhang, L.; Wang, Y.; Ding, H.; Zhang, J. Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions. Int. J. Heat Mass Transf. 2018, 122, 602–613. [Google Scholar] [CrossRef]
- Xie, S.; Liang, Z.; Zhang, L.; Wang, Y. A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples. Int. J. Heat Mass Transf. 2018, 125, 434–444. [Google Scholar] [CrossRef]
- Xie, S.; Liang, Z.; Zhang, J.; Zhang, L.; Wang, Y.; Ding, H. Numerical investigation on flow and heat transfer in dimpled tube with teardrop dimples. Int. J. Heat Mass Transf. 2019, 131, 713–723. [Google Scholar] [CrossRef]
- Liu, Y.; Rao, Y.; Weigand, B. Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface. Int. J. Heat Mass Transf. 2019, 128, 54–65. [Google Scholar] [CrossRef]
- Dagdevir, T.; Keklikcioglu, O.; Ozceyhan, V. Heat transfer performance and flow characteristic in enhanced tube with the trapezoidal dimples. Int. Commun. Heat Mass Transf. 2019, 108, 104299. [Google Scholar] [CrossRef]
- Zhou, Z.-F.; Lin, Y.-K.; Tang, H.-L.; Fang, Y.; Chen, B.; Wang, Y.-C. Heat transfer enhancement due to surface modification in the close-loop R410A flash evaporation spray cooling. Int. J. Heat Mass Transf. 2019, 139, 1047–1055. [Google Scholar] [CrossRef]
- Dierich, F.; Nikrityuk, P.A. A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle. Int. J. Therm. Sci. 2013, 65, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Pike-Wilson, E.A.; Karayiannis, T.G. Flow boiling of R245fa in 1.1 mm diameter stainless steel, brass and copper tubes. Exp. Therm. Fluid Sci. 2014, 59, 166–183. [Google Scholar] [CrossRef] [Green Version]
- Ventola, L.; Robotti, F.; Dialameh, M.; Calignano, F.; Manfredi, D.; Chiavazzo, E.; Asinari, P. Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 2014, 75, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Tikadar, A.; Najeeb, U.; Paul, T.C.; Oudah, S.K.; Salman, A.S.; Abir, A.M.; Carrilho, L.A.; Khan, J.A. Numerical investigation of heat transfer and pressure drop in nuclear fuel rod with three-dimensional surface roughness. Int. J. Heat Mass Transf. 2018, 126, 493–507. [Google Scholar] [CrossRef]
- Zhou, R.; Cao, J.; Wang, Q.J.; Meng, F.; Zimowski, K.; Xia, Z.C. Effect of EDT surface texturing on tribological behavior of aluminum sheet. J. Mater. Process. Technol. 2011, 211, 1643–1649. [Google Scholar] [CrossRef]
- Zhou, R.; Cao, J.; Ehmann, K.; Xu, C. An Investigation on Deformation-Based Micro Surface Texturing. In Proceedings of the ASME 2011 International Manufacturing Science and Engineering Conference, Corvallis, OR, USA, 13–17 June 2011; pp. 613–619. [Google Scholar]
- Guo, P.; Ehmann, K.F. An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int. J. Mach. Tools Manuf. 2013, 64, 85–95. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Z. Manufacturing of surface features from extrusion forging and extrusion rolling of sheet metals. Manuf. Lett. 2018, 15, 42–45. [Google Scholar] [CrossRef]
- Zhou, Z.; Shang, J.; Chen, Y.; Liang, X.; Shen, B.; Zhang, Z. Synchronous Shot Peening Applied on HVOF for Improvement on Wear Resistance of Fe-based Amorphous Coating. Coatings 2020, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Jiang, C.; Xu, Z.; Zhan, K.; Ji, V. Experimental study on macro- and microstress state, microstructural evolution of austenitic and ferritic steel processed by shot peening. Surf. Coat. Technol. 2019, 359, 511–519. [Google Scholar] [CrossRef]
- Lee, H.-S.; Kim, D.-S.; Jung, J.-S.; Pyoun, Y.-S.; Shin, K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corros. Sci. 2009, 51, 2826–2830. [Google Scholar] [CrossRef]
- Azar, V.; Hashemi, B.; Rezaee Yazdi, M. The effect of shot peening on fatigue and corrosion behavior of 316L stainless steel in Ringer’s solution. Surf. Coat. Technol. 2010, 204, 3546–3551. [Google Scholar] [CrossRef]
- Bagherifard, S.; Slawik, S.; Fernández-Pariente, I.; Pauly, C.; Mücklich, F.; Guagliano, M. Nanoscale surface modification of AISI 316L stainless steel by severe shot peening. Mater. Des. 2016, 102, 68–77. [Google Scholar] [CrossRef]
- Jebaraj, A.V.; Kumar, T.S.; Kumar, L.A.; Deepak, C.R. Influence of shot peening on surface quality of austenitic and duplex stainless steel. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 062057. [Google Scholar] [CrossRef]
- Menezes, M.R.; Godoy, C.; Buono, V.T.L.; Schvartzman, M.M.M.; Avelar-Batista Wilson, J.C. Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel. Surf. Coat. Technol. 2017, 309, 651–662. [Google Scholar] [CrossRef]
- Gopi, R.; Saravanan, I.; Devaraju, A.; Loganathan, G.B. Investigation of shot peening process on stainless steel and its effects for tribological applications. Mater. Today Proc. 2020, 22, 580–584. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Hou, J.; Barber, G.C.; Qiu, F. Tribological behavior of shot peened/austempered AISI 5160 steel. Tribol. Int. 2020, 145, 106197. [Google Scholar] [CrossRef]
- Miao, H.Y.; Larose, S.; Perron, C.; Lévesque, M. An analytical approach to relate shot peening parameters to Almen intensity. Surf. Coat. Technol. 2010, 205, 2055–2066. [Google Scholar] [CrossRef]
- Mylonas, G.I.; Labeas, G. Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction. Surf. Coat. Technol. 2011, 205, 4480–4494. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H.; Kim, M.; Jung, S. A 3D FE model for evaluation of peening residual stress under angled multi-shot impacts. Surf. Coat. Technol. 2012, 206, 3981–3988. [Google Scholar] [CrossRef]
- Gangaraj, S.M.H.; Guagliano, M.; Farrahi, G.H. An approach to relate shot peening finite element simulation to the actual coverage. Surf. Coat. Technol. 2014, 243, 39–45. [Google Scholar] [CrossRef]
- Sanjurjo, P.; Rodríguez, C.; Peñuelas, I.; García, T.E.; Belzunce, F.J. Influence of the target material constitutive model on the numerical simulation of a shot peening process. Surf. Coat. Technol. 2014, 258, 822–831. [Google Scholar] [CrossRef]
- Laura, L.; Castro, A.A. Gustavo Urquiza, Analysis of Heat Transfer in an Experimental Heat Exchanger Using Numerical Simulation. In Numerical Simulation—From Brain Imaging to Turbulent Flows; Lopez-Ruiz, R., Ed.; IntechOpen: London, UK, 2016. [Google Scholar]
- Tu, F.; Delbergue, D.; Miao, H.; Klotz, T.; Brochu, M.; Bocher, P.; Levesque, M. A sequential DEM-FEM coupling method for shot peening simulation. Surf. Coat. Technol. 2017, 319, 200–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Liu, S. Experimental study of forced convection heat transfer of graded metal honeycomb fabricated by additive manufacturing. Int. Commun. Heat Mass Transf. 2018, 98, 67–73. [Google Scholar] [CrossRef]
- Jing, D.; Song, J. Numerical Studies on the Thermal Performances of Electroosmotic Flow in Y-Shaped Microchannel Heat Sink. Coatings 2020, 10, 380. [Google Scholar] [CrossRef] [Green Version]
Material | Density (Kg/m3) | Ultimate Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Modulus of Elasticity (GPa) | Specific Heat Capacity (J kg−1 °C−1) |
---|---|---|---|---|---|---|
316L Stainless Steel | 8000 | 515 | 205 | 60 | 193 | 500 |
Variable | Symbol | Unit |
---|---|---|
Density of air | dair | kg/m3 |
Mass of fin material | mfin | kg |
Air mass flow rate | mair | kg/s |
Air volume flow rate | m3/s | |
The area cross-section perpendicular to the air flow path | Aflow | m2 |
Specific heat of air | Cpair | J kg−1 °C−1 |
Specific heat of fin material | Cpfin | J kg−1 °C−1 |
Fin/air heat transfer | Qtrans | W |
Air inlet temperature | Tin | °C |
Air outlet temperature | Tout | °C |
Heater surface temperature | Theat | °C |
Thermal energy of heater | Qin | J |
Heater input energy | Qheater | W |
Heating time | theat | s |
Velocity of air | Vair | m/s |
Fin/air contact surface | Aconv | m2 |
Convective heat transfer coefficient | hconv | W m−2 K−1 |
Dynamic viscosity of air | νair | Pa S |
Tube diameter | D | m |
Variable | Symbol | Value | Unit |
---|---|---|---|
Density of air | dair | 1.20000 | kg/m3 |
Mass of fin material | mfin | 0.53000 | kg |
The area cross-section perpendicular to the air flow path | Aflow | 0.01440 | m2 |
Specific heat of air | Cpair | 1000 | J kg−1 °C−1 |
Specific heat of fin material | Cpfin | 500 | J kg−1 °C−1 |
Fin/air contact surface | Aconv | 0.02653 | m2 |
Dynamic viscosity of air | νair | 1.86 × 10−5 | Pa S |
Tube diameter | D | 0.02134 | m |
Condition | Air Inlet Temperature (°C) | Heat Input (W) | Airflow Speed (m/s) | Rz (μm) | Surface Type |
---|---|---|---|---|---|
EXP-1 | 30.6 | 267.9 | 0.00 | 0.015 | Smooth |
EXP-2 | 27.7 | 387.1 | 1.21 | 0.015 | Smooth |
EXP-3 | 26.8 | 322.5 | 2.42 | 0.015 | Smooth |
EXP-4 | 32.3 | 267.9 | 0.00 | 25.0 | Rough |
EXP-5 | 32.5 | 387.1 | 1.21 | 25.0 | Rough |
EXP-6 | 31.1 | 322.5 | 2.42 | 25.0 | Rough |
Condition | Air Inlet Temperature (°C) | Heat Input (W) | Airflow Speed (m/s) | Rz (μm) | Surface Type |
---|---|---|---|---|---|
CFD-1 | 30.6 | 267.9 | 0.00 | 0.015 | Smooth |
CFD-2 | 27.7 | 387.1 | 1.21 | 0.015 | Smooth |
CFD-3 | 26.8 | 322.5 | 2.42 | 0.015 | Smooth |
CFD-4 | 30.6 | 267.9 | 0.00 | 25 | Rough |
CFD-5 | 27.7 | 387.1 | 1.21 | 25 | Rough |
CFD-6 | 26.8 | 322.5 | 2.42 | 25 | Rough |
CFD-7 | 30.6 | 267.9 | 0.00 | 75 | Rough |
CFD-8 | 27.7 | 387.1 | 1.21 | 75 | Rough |
CFD-9 | 26.8 | 322.5 | 2.42 | 75 | Rough |
CFD-10 | 30.6 | 267.9 | 0.00 | 250 | Rough |
CFD-11 | 27.7 | 387.1 | 1.21 | 250 | Rough |
CFD-12 | 26.8 | 322.5 | 2.42 | 250 | Rough |
Shot Peening Parameters | Values |
---|---|
Sand Diameter (DS) | 100 μm, 150 μm, 200 μm, 250 μm, 350 μm |
Impact Angle (θ) | 15°, 45°, 75° |
Impact Velocity (VI) | 40 m/s, 75 m/s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koowattanasuchat, P.; Mahayotsanun, N.; Sucharitpwatskul, S.; Mahabunphachai, S.; Dohda, K. Heat Transfer Enhancement by Shot Peening of Stainless Steel. Coatings 2020, 10, 584. https://doi.org/10.3390/coatings10060584
Koowattanasuchat P, Mahayotsanun N, Sucharitpwatskul S, Mahabunphachai S, Dohda K. Heat Transfer Enhancement by Shot Peening of Stainless Steel. Coatings. 2020; 10(6):584. https://doi.org/10.3390/coatings10060584
Chicago/Turabian StyleKoowattanasuchat, Pramote, Numpon Mahayotsanun, Sedthawatt Sucharitpwatskul, Sasawat Mahabunphachai, and Kuniaki Dohda. 2020. "Heat Transfer Enhancement by Shot Peening of Stainless Steel" Coatings 10, no. 6: 584. https://doi.org/10.3390/coatings10060584
APA StyleKoowattanasuchat, P., Mahayotsanun, N., Sucharitpwatskul, S., Mahabunphachai, S., & Dohda, K. (2020). Heat Transfer Enhancement by Shot Peening of Stainless Steel. Coatings, 10(6), 584. https://doi.org/10.3390/coatings10060584