Effect of Nb Content on the Microstructure and Wear Resistance of Fe-12Cr-xNb-4C Coatings Prepared by Plasma-Transferred Arc Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Characterization
3. Results
3.1. Phase Composition of the Coatings
3.2. Microstructure of the Coatings
3.3. Hardness and Wear Resistance
4. Conclusions
- The Fe-12Cr-xNb-4C coatings with the Nb contents ranging from 8.96% to 10.75% have a hypereutectic structure composed by martensite, austenite matrix, primary NbC carbides and γ+M7C3 eutecic. As the Nb content increases to 11.65%, it changes to the near-eutectic structure consisting of γ+M7C3 eutectic and NbC carbides. When the Nb content is increased to 12.55%, the coating shows a hypoeutectic structure containing primary γ, γ+M7C3 eutectic and NbC carbides.
- The amount of NbC carbides increases with increasing Nb content. The microstructure of coatings confirms the presence of flower-like, polygonal NbC carbides as the Nb content increases from 8.96% and 10.75% and long strip, cross dendrite NbC carbides in the matrix when the Nb content is 11.65% and 12.55%.
- The hardness and wear resistance of coatings increase firstly and then decrease with increasing Nb content.
- Wear resistance of coating with the 11.65% Nb content is better than that of the other four coatings. The formation of γ+M7C3 eutectic is the most important reason for obtaining good wear resistance.
- The coating with 12.55% Nb content has the worst wear resistance, owing to high brittleness of the coarse NbC carbides accelerating abrasion damage of the coating.
Author Contributions
Funding
Conflicts of Interest
References
- Hawk, J.A.; Wilson, R.D.; Danks, D.R.; Kiser, M.T. Abrasive wear failures. In Failure Analysis and Prevention; Becker, W.T., Shipley, R.J., Eds.; ASM Handbook: Cleveland, OH, USA, 2002; Volume 11, pp. 906–921. [Google Scholar]
- Li, G.; Gan, Y.J.; Liu, C.H.; Shi, Y.; Zhao, Y.C.; Kou, S.Z. Corrosion and wear resistance of Fe-based amorphous coatings. Coatings 2020, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.Y.; Yun, J.G.; Lee, J.H.; Shin, D.I.; Kang, C.Y. Identification of intermetallic compounds and its formation mechanism in boron steel hot-dipped in Al-7 wt.% Mn alloy. Coatings 2017, 7, 222. [Google Scholar] [CrossRef] [Green Version]
- Yury, K.; Filippov, M.; Makarow, A.; Malygina, I.; Soboleva, N.; Fantozzi, D.; Andrea, M.; Koivuluoto, H.; Vuoristo, P. Arc-sprayed Fe-based coatings from cored wires for wear and corrosion protection in power engineering. Coatings 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Jiang, J.; Li, H.; Yang, X.; Xu, H.; Jin, Y.; Ma, C.; Dong, Q.; Guo, N. Effect of annealing treatment on microstructure and properties of Cr-coatings deposited on AISI 5140 steel by brush-plating. Coatings 2018, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Pogrebnjak, A.D.; Beresnev, V.M.; Bondar, O.V.; Postolnyi, B.O.; Zaleski, K.; Coy, E.; Jurga, S.; Lisovenko, M.O.; Konarski, P.; Rebouta, L.; et al. Superhard CrN/MoN coatings with multilayer architecture. Mater. Des. 2018, 153, 47–59. [Google Scholar] [CrossRef]
- Rafiei, M.; Ghayour, H.; Mostaan, H.; Hosseini, M.Z. The effect of V addition on microstructure and tribological properties of Fe-Ti-C claddings produced by gas tungsten arc welding. J. Mater. Process. Technol. 2019, 266, 569–578. [Google Scholar] [CrossRef]
- Liu, D.S.; Wang, J.Y.; Zhang, Y.; Kannan, R.; Long, W.; Wu, M.F.; Wang, Y.Y.; Li, L.J. Effect of Mo on microstructure and wear resistance of slag-free self-shielded metal-cored welding overlay. J. Mater. Process. Technol. 2019, 270, 82–91. [Google Scholar] [CrossRef]
- Hao, W.; Sheng, F.Y.; Adnan, R.K.; An, G.H. Effects of vanadium on microstructure and wear resistance of high chromium cast iron hardfacing layer by electroslag surfacing. Metals 2018, 8, 458. [Google Scholar]
- Gou, J.F.; Wang, Y.; Sun, J.P.; Li, X.W. Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles. Surf. Coat. Technol. 2017, 311, 113–126. [Google Scholar] [CrossRef]
- Maksakova, O.V.; Simoẽs, S.; Pogrebnjak, A.D.; Bondar, O.V.; Kravchenko, Y.O.; Koltunowicz, T.N.; Shaimardanov, Z.K. Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties. J. Alloy. Compd. 2019, 776, 679–690. [Google Scholar] [CrossRef]
- Brezinová, J.; Draganovská, D.; Guzanová, A.; Balog, P.; Viááš, J. Influence of the hardfacing welds structure on their wear resistance. Metals 2016, 6, 36. [Google Scholar] [CrossRef]
- Moghaddam, H.Z.; Sharifitabar, M.; Roudini, G. Physical and mechanical properties of nanostructured (Ti-Zr-Nb)N coatings obtained by vacuum-arc deposition method. Surf. Coat. Technol. 2019, 361, 91–101. [Google Scholar]
- Zong, L.; Guo, N.; Li, R.G.; Yu, H.B. Effect of B content on microstructure and wear resistance of Fe-3Ti-4C hardfacing alloys produced by plasma-transferred arc welding. Coatings 2019, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Carrington, M.J.; Daure, J.; Ratia, V.L.; Shipway, P.H.; McCartey, D.G.; Stewart, D.A. Microstructural characterisation of Tristelle 5183 (Fe-21%Cr-10%Ni-7.5%Nb-5%Si-2%C in wt%) alloy powder produced by gas atomisation. Mater. Des. 2019, 164, 107548. [Google Scholar] [CrossRef]
- Li, Q.T.; Lei, Y.P.; Fu, H.G. Growth mechanism, distribution characteristics and reinforcing behavior of (Ti, Nb)C particle in laser cladded Fe-based composite. Appl. Surf. Sci. 2014, 316, 610–616. [Google Scholar] [CrossRef]
- Zhao, C.C.; Xing, X.L.; Guo, J.; Shi, Z.J.; Zhou, Y.F.; Ren, X.J.; Yang, Q.X. Micro-properties of (Nb,M)C carbide (M=V, Mo, V, W and Cr) and precipitation behavior of (Nb,V)C in carbide reinforced coating. J. Alloys Compd. 2019, 788, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, F.; Najafi, H.; Abbasi, A. The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy. Surf. Coat. Technol. 2017, 324, 85–91. [Google Scholar] [CrossRef]
- Yang, K.; Gao, Y.; Yang, K.; Bao, Y.F.; Jiang, Y.F. Microstructure and wear resistance of Fe-Cr13-C-Nb hardfacing alloy with Ti addition. Wear 2017, 376–377, 1091–1096. [Google Scholar] [CrossRef]
- Zhang, L.M.; Sun, D.B.; Yu, H.Y. Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding. Mater. Sci. Eng. A 2008, 490, 57–61. [Google Scholar] [CrossRef]
- Correa, E.O.; Alcantara, N.G.; Valeriano, L.C.; Barbedo, N.D.; Chaves, R.R. The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process. Surf. Coat. Technol. 2015, 276, 479–484. [Google Scholar] [CrossRef]
- Chung, R.J.; Tang, X.; Li, D.Y.; Hinckley, B.; Dolman, K. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear 2013, 301, 695–706. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.H.; Fan, D.Y.; Chen, S. Microstructure and wear properties of Fe-6wt.%Cr-0.55wt.%C-Xwt.%Nb laser cladding coating and the mechanism analysis. Mater. Des. 2015, 88, 1031–1041. [Google Scholar] [CrossRef]
- ASTM A283/A283M-18 Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates; ASTM: West Conshohocken, PA, USA, 2018.
- Zhang, Z.Q.; Shen, P.; Wang, Y.; Dong, Y.P.; Jiang, Q.C. Fabrication of TiC and TiB2 locally reinforced steel matrix composites using a Fe-Ti-B4C-C system by an SHS-casting route. J. Mater. Sci. 2007, 42, 8350–8356. [Google Scholar] [CrossRef]
- Radzikowska, J.M. Metallography and microstructures of cast iron. In Metallography and Microstructures; Vander Voort, G.F., Ed.; ASM Handbook: Cleveland, OH, USA, 2004; Volume 9, pp. 565–587. [Google Scholar]
- Filipovic, M.; Kamberovic, Z.; Korac, M.; Gavrilovski, M. Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons. Mater. Des. 2013, 47, 41–48. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wang, H.; He, D.Y.; Cui, L.; Jiang, J.M.; Zhou, Z.; Zhao, Q.Y. Microstructure characterization of in situ NbC/high entropy alloys by plasma cladding. Rare Met. Mater. Eng. 2015, 44, 3156–3160. [Google Scholar]
- Qiu, W.B.; Liu, Y.; Yea, J.W.; Fan, H.J.; Qiu, Y.C. Effects of (Ti,Ta,Nb,W)(C,N) on the microstructure, mechanical properties and corrosion behaviors of WC-Co cemented carbides. Ceram. Int. 2017, 43, 2918–2926. [Google Scholar] [CrossRef]
- Kesri, R.; Durand-Charre, M. Phase equilibria, Solidification and solid-state transformations of white cast irons containing niobium. J. Mater. Sci. 1987, 22, 2959–2964. [Google Scholar] [CrossRef]
- Azimi, G.; Shamanian, M. Effect of silicon content on the microstructure and properties of Fe-Cr-C hardfacing alloys. J. Mater. Sci. 2012, 45, 842–849. [Google Scholar] [CrossRef]
- Bourithis, L.; Papadimitriou, G.D. The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique. Wear 2009, 266, 1155–1164. [Google Scholar] [CrossRef]
- Zum Gahr, K.-H. Microstructure and Wear Mechanism, 1st ed.; Elsevier: North Holland, The Netherlands, 1987. [Google Scholar]
- Correa, E.O.; Alcantara, N.G.; Tecco, D.G.; Kuma, R.V. The relationship between the microstructure and abrasive resistance of a hardfacing alloy in the Fe-Cr-C-Nb-V system. Mater. Sci. Eng. A 2007, 38, 1671–1680. [Google Scholar] [CrossRef]
- Patrich, L.; Li, W.; Xing, S.; Nazmul, A. Comparison of abrasive wear of a complex high alloy hardfacing deposit and WC-Ni based metal matrix composite. Wear 2002, 294, 380–386. [Google Scholar]
Sample | Cr | Nb | C | Fe |
---|---|---|---|---|
Alloy A | 12.34 | 8.96 | 3.40 | Bal. |
Alloy B | 12.01 | 9.86 | 3.71 | Bal. |
Alloy C | 12.06 | 10.75 | 4.01 | Bal. |
Alloy D | 12.11 | 11.65 | 4.32 | Bal. |
Alloy E | 12.29 | 12.55 | 4.63 | Bal. |
Sample | Position | Content of Components (wt.%) | |||
---|---|---|---|---|---|
Nb | Fe | Cr | C | ||
Alloy A | a1 | 76.41 | 12.65 | 3.13 | 7.82 |
a2 | 0.00 | 76.82 | 16.94 | 6.23 | |
Alloy D | d1 | 79.82 | 4.12 | 2.23 | 13.83 |
d2 | 0.00 | 65.8 | 27.5 | 6.7 | |
Alloy E | e1 | 81.23 | 3.44 | 1.02 | 14.31 |
e2 | 0.00 | 57.82 | 20.67 | 21.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, L.; Zhao, Y.; Long, S.; Guo, N. Effect of Nb Content on the Microstructure and Wear Resistance of Fe-12Cr-xNb-4C Coatings Prepared by Plasma-Transferred Arc Welding. Coatings 2020, 10, 585. https://doi.org/10.3390/coatings10060585
Zong L, Zhao Y, Long S, Guo N. Effect of Nb Content on the Microstructure and Wear Resistance of Fe-12Cr-xNb-4C Coatings Prepared by Plasma-Transferred Arc Welding. Coatings. 2020; 10(6):585. https://doi.org/10.3390/coatings10060585
Chicago/Turabian StyleZong, Lin, Yinglong Zhao, Shiteng Long, and Ning Guo. 2020. "Effect of Nb Content on the Microstructure and Wear Resistance of Fe-12Cr-xNb-4C Coatings Prepared by Plasma-Transferred Arc Welding" Coatings 10, no. 6: 585. https://doi.org/10.3390/coatings10060585
APA StyleZong, L., Zhao, Y., Long, S., & Guo, N. (2020). Effect of Nb Content on the Microstructure and Wear Resistance of Fe-12Cr-xNb-4C Coatings Prepared by Plasma-Transferred Arc Welding. Coatings, 10(6), 585. https://doi.org/10.3390/coatings10060585