Obtaining and Corrosion Performance of Composite Zinc Coatings with Incorporated Carbon Spheres
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Polymer Stabilizaion of Carbon Sphere Suspension
2.3. Electrophoretic Mobility of Carbon Spheres
2.4. Electrodeposition of Composite Coating on Steel
2.5. Methods for Corrosion Characterization of the Coatings
2.6. Surface and Composition of the Coatings
2.7. Corrosion Medium and Reproducibility
3. Results and Discussion
3.1. Stabilization of Carbon Particle Suspension by Addition of Pluronic F127
3.2. Morphology of the Zinc–Carbon Sphere Coating
3.3. Electrochemical Tests
3.3.1. Polarization Resistance Investigations
3.3.2. Potentiodynamic (PD) Polarization
3.3.3. Electrochemical Impedance (EIS) Measurements
3.3.4. Cyclic Voltammetry (CVA)
3.3.5. XRD Investigations
4. Conclusions
- (1)
- Steric stabilization of a colloidal suspension of positively charged CSp particles was realized by applying non-ionic amphiphilic tri-block copolymer Pluronic F127 at concentrations of 7 g/L. SEM investigations clearly demonstrate the uniform distribution of CSp particles in the metallic zinc matrix of the composite coating.
- (2)
- The Rp, PD, and EIS methods clearly presented the positive effect of CSp particles on the protective properties of the composite for 60 days and at conditions of external polarization.
- (3)
- The main reason for the improved corrosion resistance and protective ability in that medium seems to be the forming of a mixed layer, the latter simultaneously containing zinc corrosion products and CSp particles, which leads to the appearance of an additional physical barrier against the penetration of the corrosive agents deep inside.
Author Contributions
Funding
Conflicts of Interest
References
- Brenner, A. Electrodeposition of Alloys. Principles and Practice; Academic Press: New York, NY, USA, 1963; pp. 123–152. [Google Scholar]
- Boshkov, N. Galvanic Zn-Mn alloys—electrodeposition, phase composition, corrosion behavior and protective ability. Surf. Coat. Technol. 2003, 172, 217–226. [Google Scholar] [CrossRef]
- Li, M.; Luo, S.; Qian, Y.; Zhang, W.; Jiang, L.; Shen, J. Effect of additives on electrodeposition of nanocrystalline zinc from acidic sulfate solutions. J. Electrochem. Soc. 2007, 154, D567–D571. [Google Scholar] [CrossRef]
- Tuaweri, T.J.; Adigio, E.M.; Jombo, P.P. Influence of process parameters on the cathode current efficiency of Zn/SiO2 electrodeposition. Int. J. Mechan. Eng. Appl. 2013, 1, 93–99. [Google Scholar] [CrossRef]
- Fayomi, O.S.I.; Popoola, A.P.I.; Loto, C.A. Tribo-mechanical investigation and anti-corrosion properties of Zn-TiO2 thin film composite coatings from electrolytic chloride bath. Int. J. Electroch. Sci. 2014, 9, 3885–3903. [Google Scholar]
- Vathsala, K.; Venkatesha, T.V. Zn–ZrO2 nanocomposite coatings: Electrodeposition and evaluation of corrosion resistance. Appl. Surf. Sci. 2011, 257, 8929–8936. [Google Scholar] [CrossRef]
- Praveen, B.M.; Venkatesha, T.V.; Arthoba, N.Y.; Prashantha, K. Corrosion studies of carbon nanotubes-Zn composite coating. Surf. Coat. Technol. 2007, 201, 5836–5842. [Google Scholar] [CrossRef]
- Kamburova, K.; Boshkova, N.; Tabakova, N.; Boshkov, N.; Radeva, T. Application of polymeric modified polyaniline-silica particles for improved corrosion resistance of hybrid zinc coatings. Colloids Surf. A Physicochem. Eng. Aspects 2020, 592, 124546. [Google Scholar] [CrossRef]
- Praveen, B.M.; Venkatesha, T.V. Generation and corrosion behavior of Zn-nano sized carbon black composite coating. Int. J. Electrochem. Sci. 2009, 4, 258–266. [Google Scholar]
- Chen, X.H.; Chen, C.S.; Xiao, H.N.; Cheng, F.Q.; Zhang, G.; Yi, G.J. Corrosion behavior of carbon nanotubes–Ni composite coating. Surf. Coat. Technol. 2005, 191, 351–356. [Google Scholar] [CrossRef]
- Guo, C.; Zuo, Y.; Zhao, X.; Zhao, J.; Xiong, J. Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surf. Coat. Technol. 2008, 202, 3385–3390. [Google Scholar] [CrossRef]
- Bakshi, S.R.; Lahiri, D.; Agarwal, A. Carbon nanotube reinforced metal matrix composites-a review. Intern. Mater. Rev. 2010, 55, 41–64. [Google Scholar] [CrossRef]
- Peshova, M.; Bachvarov, V.; Vitkova, S.; Atanasova, G.; Boshkov, N. Electrodeposited zinc composite coatings with embedded carbon nanotubes—advanced composite materials for better corrosion protection. Trans. IMF 2018, 96, 324–331. [Google Scholar] [CrossRef]
- Padovani, G.C.; Petry, R.; Holanda, C.A.; Sousa, F.A.; Saboia, V.M.; Silva, C.A.; Paschoal, A.R.; Souza Filho, A.G.; Paula, A.J. Mechanisms of colloidal stabilization of oxidized nanocarbons in the presence of polymers: Obtaining highly stable colloids in physiological media. J. Phys. Chem. C 2015, 119, 18741–18752. [Google Scholar] [CrossRef]
- Lin, Y.; Alexandridis, P. Temperature-dependent adsorption of Pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J. Phys. Chem. B 2002, 106, 10834–10844. [Google Scholar] [CrossRef]
- Bodratti, A.M.; Wu, J.; Jahan, R.; Sarkar, B.; Tsianou, M.; Alexandridis, P. Mono-and di-valent salts as modifiers of PEO-PPO-PEO block copolymer interactions with silica nanoparticles in aqueous dispersions. J. Disp. Sci. Technol. 2015, 36, 1806–1815. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Zhu, H.; Liu, H.; Chen, Y.; Yang, M. Dispersing multi-walled carbon nanotubes with water–soluble block copolymers and their use as supports for metal nanoparticles. Carbon 2007, 45, 285–292. [Google Scholar] [CrossRef]
- Sis, H.; Birinci, M. Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Coll. Surf. A: Physicochem. Eng. Aspects 2009, 341, 60–67. [Google Scholar] [CrossRef]
- Ridaoui, H.; Jada, A.; Vidal, L.; Donnet, J.-B. Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf. A: Physicochem. Eng. Aspects 2006, 278, 149–159. [Google Scholar] [CrossRef]
- Miano, F.; Bailey, A.; Luckham, P.F.; Tadros, T.F. Adsorption of poly (ethylene oxide)—poly(propylene oxide) ABA block copolymers on carbon black and the rheology of the resulting dispersions. Colloids Surf. 1992, 69, 9–16. [Google Scholar] [CrossRef]
- Pol, V.G.; Thackeray, M.M. Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells. Energy Environ. Sci. 2011, 4, 1904–1912. [Google Scholar] [CrossRef]
- Koprinarov, N.; Konstantinova, M. Preparation of carbon spheres by low-temperature pyrolysis of cyclic hydrocarbons. J. Mater. Sci. 2011, 46, 1494–1501. [Google Scholar] [CrossRef]
- Meissner, T.; Oelschlagel, K.; Potthoff, A. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies. Int. Nano Lett. 2014, 4, 116–129. [Google Scholar] [CrossRef]
- Szleifer, I.; Yerushalmi-Rozen, R. Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer 2005, 46, 7803–7818. [Google Scholar] [CrossRef] [Green Version]
- Hai, C.; Fuji, M.; Watanabe, H.; Wang, F.; Shirai, T.; Takahashi, M. Evaluation of surfactant-free stabilized vapor grown carbon fibers with ζ-potential and Raman spectroscopy. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 381, 70–73. [Google Scholar] [CrossRef]
- Barany, S.; Kartel, N.; Meszaros, R. Electrokinetic Potential of Multilayer Carbon Nanotubes in Aqueous Solutions of Electrolytes and Surfactants. Colloid J. 2014, 76, 509–513. [Google Scholar] [CrossRef]
- Park, Y.H.; Kim, W.S.; Lee, D.W. Size analysis of industrial carbon blacks by sedimentation and flow field-flow fractionation. Anal. Bioanal. Chem. 2003, 375, 489–495. [Google Scholar] [CrossRef]
- Lau, A.C.; Furlong, D.N.; Healy, T.W.; Grieser, F. The electrokinetic properties of carbon black and graphitized carbon black aqueous colloids. Colloids Surf. A Physicochem. Eng. Aspects 1986, 18, 93–104. [Google Scholar] [CrossRef]
- Boshkov, N.; Tsvetkova, N.; Petrov, P.; Koleva, D.; Petrov, K.; Avdeev, G.; Tsvetanov, C.; Raichevski, G.; Raicheff, R. Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles. Appl. Surf. Sci. 2008, 254, 5618–5625. [Google Scholar] [CrossRef]
- Koleva, D.A.; Taheri, P.; Tsvetkova, N.; Boshkov, N.; Van Breugel, K.; De Wit, J.H.W.; Mol, J.M.C. Corrosion performance of composite galvanic coatings with variable concentration of polymeric nanoaggregates and/or Cr (III) conversion layers. ECS Trans. 2011, 33, 85–92. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boshkova, N.; Kamburova, K.; Koprinarov, N.; Konstantinova, M.; Boshkov, N.; Radeva, T. Obtaining and Corrosion Performance of Composite Zinc Coatings with Incorporated Carbon Spheres. Coatings 2020, 10, 665. https://doi.org/10.3390/coatings10070665
Boshkova N, Kamburova K, Koprinarov N, Konstantinova M, Boshkov N, Radeva T. Obtaining and Corrosion Performance of Composite Zinc Coatings with Incorporated Carbon Spheres. Coatings. 2020; 10(7):665. https://doi.org/10.3390/coatings10070665
Chicago/Turabian StyleBoshkova, Nelly, Kamelia Kamburova, Nikola Koprinarov, Mariana Konstantinova, Nikolai Boshkov, and Tsetska Radeva. 2020. "Obtaining and Corrosion Performance of Composite Zinc Coatings with Incorporated Carbon Spheres" Coatings 10, no. 7: 665. https://doi.org/10.3390/coatings10070665
APA StyleBoshkova, N., Kamburova, K., Koprinarov, N., Konstantinova, M., Boshkov, N., & Radeva, T. (2020). Obtaining and Corrosion Performance of Composite Zinc Coatings with Incorporated Carbon Spheres. Coatings, 10(7), 665. https://doi.org/10.3390/coatings10070665