Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Nanocrystalline Silicon Material: Properties and Challenges
4. Strategies for Integration in SHJ Solar Cells
- (a)
- Fully amorphous incubation zone with lower doping efficiency and high resistivity.
- (b)
- High resistive bulk of the nc-Si:H or nc-SiOx:H layer.
- (c)
- A too low FC and, hence, low doping efficiency at the surface of the thin nanocrystalline film might lead to a poor tunnel-recombination (p)nc-Si:H/TCO contact.
Nucleation Versus Passivation
5. SHJ Solar Cells on Different Wafer Morphologies: the Path to Tandem Device
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Usui, S.; Kikuchi, M. Properties of heavily doped GDSi with low resistivity. J. Non Cryst. Solids 1979, 34, 1–11. [Google Scholar] [CrossRef]
- Vetterl, O.; Finger, F.; Carius, R.; Hapke, P.; Houben, L.; Kluth, O.; Lambertz, A.; Mück, A.; Rech, B.; Wagner, H. Intrinsic microcrystalline silicon: A new material for photovoltaics. Sol. Energy Mater. Sol. Cells 2000, 62, 97–108. [Google Scholar] [CrossRef]
- Shah, A.V.; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Graf, U. Material and solar cell research in microcrystalline silicon. Sol. Energy Mater. Sol. Cells 2003, 78, 469–491. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.; Dubail, S.; Servan, J.A.A.; Pellaton-Vaucher, N.; Platz, R.; Hof, C.; Kroll, U.; Meier, J.; Torres, P.; Keppner, H.; et al. The “micromorph” solar cell: Extending a-Si:H technology towards thin film crystalline silicon. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, Washington, DC, USA, 13–27 May 1996; pp. 4–7. [Google Scholar]
- Meier, J.; Torres, P.; Platz, R.; Dubail, S.; Kroll, U.; Selvan, J.; Koehler, J. On the way towards high efficiency thin film silicon solar cells by the “micromorph” concept. MRS Proc. 1996, 420, 683–684. [Google Scholar] [CrossRef]
- Das, D.; Mandal, S.; Barua, A. Intrinsic hydrogenated microcrystalline silicon oxide films prepared by RF glow discharge. J. Mater. Sci. Lett. 1998, 7, 2097–2100. [Google Scholar] [CrossRef]
- Cuony, P.; Marending, M.; Alexander, D.T.L.; Boccard, M.; Bugnon, G.; Despeisse, M.; Ballif, C. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells. Appl. Phys. Lett. 2010, 97, 213502. [Google Scholar] [CrossRef]
- Ding, K.; Aeberhard, U.; Smirnov, V.; Holländer, B.; Finger, F.; Rau, U. Wide gap microcrystalline silicon oxide emitter for a-SiOx: H/c-Si heterojunction solar cells. Jpn. J. Appl. Phys. 2013, 52, 122304. [Google Scholar] [CrossRef]
- Rattanapan, S.; Watahiki, T.; Miyajima, S.; Konagai, M. Improvement of rear surface passivation quality in p-type silicon heterojunction solar cells using boron-doped microcrystalline silicon oxide. Jpn. J. Appl. Phys. 2011, 50, 1–4. [Google Scholar] [CrossRef]
- Sritharathikhun, J.; Yamamoto, H.; Miyajima, S.; Yamada, A.; Konagai, M. Optimization of amorphous silicon oxide buffer layer for high-efficiency p-type hydrogenated microcrystalline silicon oxide/n-type crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 2008, 47, 8452–8455. [Google Scholar] [CrossRef]
- Dominé, D.; Buehlmann, P.; Bailat, J.; Billet, A.; Feltrin, A.; Ballif, C. Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector. Phys. Status Solidi Rapid Res. Lett. 2008, 2, 163–165. [Google Scholar] [CrossRef]
- Cuony, P.; Alexander, D.T.L.; Perez-Wurfl, I.; Despeisse, M.; Bugnon, G.; Boccard, M.; Söderström, T.; Hessler-Wyser, A.; Hébert, C.; Ballif, C. Silicon filaments in silicon oxide for next-generation photovoltaics. Adv. Mater. 2012, 24, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Kirner, S.; Calnan, S.; Gabriel, O.; Neubert, S.; Zelt, M.; Stannowski, B.; Rech, B.; Schlatmann, R. An improved silicon-oxide-based intermediate-reflector for micromorph solar cells. Phys. Status Solidi (C) 2012, 9, 2145–2148. [Google Scholar] [CrossRef]
- Yamamoto, K.; Nakajima, A.; Yoshimi, M.; Sawada, T.; Fukuda, S.; Suezaki, T.; Ichikawa, M.; Koi, Y.; Goto, M.; Meguro, T.; et al. A thin-film silicon solar cell and module. Prog. Photovolt. Res. Appl. 2005, 13, 489–494. [Google Scholar] [CrossRef]
- Kirner, S.; Neubert, S.; Schultz, C.; Gabriel, O.; Stannowski, B.; Rech, B.; Schlatmann, R. Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies. Jpn. J. Appl. Phys. 2015, 54, 08KB03. [Google Scholar] [CrossRef]
- Tanaka, M.; Taguchi, M.; Matsuyama, T.; Sawada, T.; Tsuda, S.; Nakano, S.; Hanafusa, H.; Kumano, Y. Development of new a-si/c-si heterojunction solar cells: Acj-hit (artificially constructed junction- heterojunction with intrinsic thin-layer). Jpn. J. Appl. Phys. 1992, 31, 3518–3522. [Google Scholar] [CrossRef]
- Taguchi, M.; Yano, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Nishiwaki, T.; Fujita, K.; Maruyama, E. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 2014, 4, 96–99. [Google Scholar] [CrossRef]
- Holman, Z.C.; Descoeudres, A.; Barraud, L.; Fernandez, F.Z.; Seif, J.P.; De Wolf, S.; Ballif, C. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2012, 2, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Holman, Z.C.; Filipič, M.; Descoeudres, A.; De Wolf, S.; Smole, F.; Topič, M.; Ballif, C. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J. Appl. Phys. 2013, 113, 013107. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, L.; Kirner, S.; Mews, M.; Conrad, E.; Korte, L.; Stannowski, B.; Rech, B.; Schlatmann, R. Comparison of TMB and B2H6 as precursors for emitter doping in high efficiency silicon hetero junction solar cells. Energy Procedia 2014, 60, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Seif, J.; Descoeudres, A.; Filipič, M.; Smole, F.; Topič, M.; Charles Holman, Z.; De Wolf, S.; Ballif, C. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J. Appl. Phys. 2014, 115, 024502. [Google Scholar] [CrossRef] [Green Version]
- Van Cleef, M.W.M.; Rubinelli, F.A.; Rizzoli, R.; Pinghini, R.; Schropp, R.E.I.; Van Der Weg, W.F. Amorphous silicon carbide/crystalline silicon heterojunction solar cells: A comprehensive study of the photocarrier collection. Jpn. J. Appl. Phys. 1998, 37, 3926–3932. [Google Scholar] [CrossRef]
- Pysch, D.; Bivour, M.; Hermle, M.; Glunz, S.W. Amorphous silicon carbide heterojunction solar cells on p-type substrates. Thin Solid Films 2011, 519, 2550–2554. [Google Scholar] [CrossRef]
- Mueller, T.; Duengen, W.; Ma, Y.; Job, R.; Scherff, M.; Fahrner, W.R. Investigation of the emitter band gap widening of heterojunction solar cells by use of hydrogenated amorphous carbon silicon alloys. J. Appl. Phys. 2007, 102, 074505. [Google Scholar] [CrossRef]
- Mueller, T.; Schwertheim, S.; Fahrner, W.R. Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications. J. Appl. Phys. 2010, 107, 014504. [Google Scholar] [CrossRef]
- Mews, M.; Liebhaber, M.; Rech, B.; Korte, L. Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells. Appl. Phys. Lett. 2015, 107, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, L.; Kirner, S.; Gabriel, O.; Schmidt, S.S.; Korte, L.; Stannowski, B.; Rech, B.; Schlatmann, R. Nanocrystalline silicon emitter optimization for Si-HJ solar cells: Substrate selectivity and CO2 plasma treatment effect. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1532958. [Google Scholar] [CrossRef]
- Mazzarella, L.; Morales-Vilches, A.B.; Korte, L.; Schlatmann, R.; Stannowski, B. Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 386–391. [Google Scholar] [CrossRef]
- Morales-Vilches, A.B.; Mazzarella, L.; Hendrichs, M.; Korte, L.; Schlatmann, R.; Stannowski, B. Nanocrystalline vs. amorphous n-type silicon front surface field layers in silicon heterojunction solar cells: Role of thickness and oxygen content. In Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 25–29 September 2017; pp. 715–719. [Google Scholar] [CrossRef]
- Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells. J. Appl. Phys. 2016, 119, 223104. [Google Scholar] [CrossRef] [Green Version]
- Mcintosh, K.R.; Baker-finch, S.C. OPAL 2.0: Rapid optical simulation of practical silicon solar cells. In Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002. [Google Scholar]
- Santbergen, R.; Meguro, T.; Suezaki, T.; Koizumi, G.; Yamamoto, K.; Zeman, M. GenPro4 optical model for solar cell simulation and its application to multijunction solar cells. IEEE J. Photovolt. 2017, 7, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Kegel, J.; Angermann, H.; Stürzebecher, U.; Conrad, E.; Mews, M.; Korte, L.; Stegemann, B. Over 20% conversion efficiency on silicon heterojunction solar cells by IPA-free substrate texturization. Appl. Surf. Sci. 2014, 301, 56–62. [Google Scholar] [CrossRef]
- Morales-Vilches, A.B.; Cruz, A.; Pingel, S.; Neubert, S.; Mazzarella, L.; Meza, D.; Korte, L.; Schlatmann, R.; Stannowski, B. ITO-free silicon heterojunction solar cells with ZnO: Al/SiO2 front electrodes reaching a conversion efficiency of 23%. IEEE J. Photovolt. 2019, 9, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Perrin, J.; Leroy, O.; Bordage, M.C. Cross-sections, rate constants and transport coefficients in silane plasma chemistry. Contrib. Plasma Phys. 1996, 36, 3–49. [Google Scholar] [CrossRef]
- Knights, J.C.; Lujan, R.A.; Rosenblum, M.P.; Street, R.A.; Bieglesen, D.K.; Reimer, J.A. Effects of inert gas dilution of silane on plasma-deposited a-Si:H films. Appl. Phys. Lett. 1981, 38, 331–333. [Google Scholar] [CrossRef]
- Schmitt, J.P.M. Fundamental mechanisms in silane plasma decompositions and amorphous silicon deposition. J. Non Cryst. Solids 1983, 59–60, 649–657. [Google Scholar] [CrossRef]
- Matsuda, A. Formation kinetics and control of microcrystallite in µc-Si: H form glow discharge plasma. J. Non-Cryst. Solids 1983, 59–60, 767–775. [Google Scholar] [CrossRef]
- Itoh, T.; Yamamoto, K.; Ushikoshi, K.; Nonomura, S.; Nitta, S. Characterization and role of hydrogen in nc-Si: H. J. Non Cryst. Solids 2000, 266–269, 201–205. [Google Scholar] [CrossRef]
- Vallat-Sauvain, E.; Kroll, U.; Meier, J.; Shah, A.; Pohl, J. Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution. J. Appl. Phys. 2000, 87, 3137–3142. [Google Scholar] [CrossRef] [Green Version]
- Houben, L.; Luysberg, M.; Hapke, P.; Carius, R.; Finger, F.; Wagner, H. Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1998, 77, 1447–1460. [Google Scholar] [CrossRef]
- Miyazaki, S.; Osaka, Y.; Hirose, M. Effects of growth rate on the microcrystalline characteristics of plasma-deposited μc-Si: H. Sol. Energy Mater. 1984, 11, 85–95. [Google Scholar] [CrossRef]
- Roca i Cabarrocas, P.; Layadi, N.; Heitz, T.; Drévillon, B.; Solomon, I. Substrate selectivity in the formation of microcrystalline silicon: Mechanisms and technological consequences. Appl. Phys. Lett. 1995, 66, 3609–3611. [Google Scholar] [CrossRef]
- Koh, J.; Ferlauto, A.S.; Rovira, P.I.; Wronski, C.R.; Collins, R.W. Evolutionary phase diagrams for plasma-enhanced chemical vapor deposition of silicon thin films from hydrogen-diluted silane. Appl. Phys. Lett. 1999, 75, 2286–2288. [Google Scholar] [CrossRef]
- Koh, J.; Fujiwara, H.; Koval, R.J.; Wronski, C.R.; Collins, R.W. Real time spectroscopic ellipsometry studies of the nucleation and growth of p-type microcrystalline silicon films on amorphous silicon using B2H6, B(CH3)3 and BF3 dopant source gases. J. Appl. Phys. 1999, 85, 4141–4153. [Google Scholar] [CrossRef]
- Richter, A.; Smirnov, V.; Lambertz, A.; Nomoto, K.; Welter, K.; Ding, K. Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2017, 174, 196–201. [Google Scholar] [CrossRef]
- Mazzarella, L.; Kirner, S.; Stannowski, B.; Korte, L.; Rech, B.; Schlatmann, R. P-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2. Appl. Phys. Lett. 2015, 106, 023902. [Google Scholar] [CrossRef]
- Mazzarella, L. Nanocrystalline Silicon and Silicon Oxide Contact Layers for Silicon Heterojunction Solar Cells. Ph.D. Thesis, Technischen Universität Berlin, Berlin, Germany, 2017. [Google Scholar]
- Mazzarella, L.; Morales-Vilches, A.B.; Hendrichs, M.; Kirner, S.; Korte, L.; Schlatmann, R.; Stannowski, B. Nanocrystalline n-type silicon oxide front contacts for silicon heterojunction solar cells: Photocurrent enhancement on planar and textured substrates. IEEE J. Photovolt. 2017, 8, 70–78. [Google Scholar] [CrossRef]
- Spear, W.E.; Le Comber, P.G. Electronic properties of substitutionally doped amorphous Si and Ge. Philos. Mag. 1976, 33, 935–949. [Google Scholar] [CrossRef]
- Lambertz, A.; Grundler, T.; Finger, F. Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells. J. Appl. Phys. 2011, 109, 113109. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Aeberhard, U.; Lambertz, A.; Smirnov, V.; Holländer, B.; Finger, F.; Rau, U. Impact of doped microcrystalline silicon oxide layers on crystalline silicon surface passivation. Can. J. Phys. 2014, 92, 758–762. [Google Scholar] [CrossRef]
- Gabriel, O.; Kirner, S.; Klingsporn, M.; Friedrich, F.; Stannowski, B.; Schlatmann, R. On the plasma chemistry during plasma enhanced chemical vapor deposition of microcrystalline silicon oxides. Plasma Process. Polym. 2015, 12, 82–91. [Google Scholar] [CrossRef]
- Pellaton-Vaucher, N.; Rech, B.; Fischer, D.; Dubail, S.; Goetz, M.; Keppner, H.; Wyrsch, N.; Beneking, C.; Hadjadj, O.; Shklover, V.; et al. Controlled nucleation of thin microcrystalline layers for the recombination junction in a-Si stacked cells. Sol. Energy Mater. Sol. Cells 1997, 49, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Pernet, P.; Goetz, M.; Keppner, H.; Shah, A. Growth of thin μc-Si: H on intrinsic a-Si: H for solar cells application. Mater. Res. Soc. Symp. Proc. 1997, 452, 889–894. [Google Scholar]
- Boccard, M.; Monnard, R.; Antognini, L.; Ballif, C. Silicon oxide treatment to promote crystallinity of p-type microcrystalline layers for silicon heterojunction solar cells. AIP Conf. Proc. 2018, 1999, 040003. [Google Scholar]
- Vetterl, O.; Hülsbeck, M.; Wolff, J.; Carius, R.; Finger, F. Preparation of microcrystalline silicon seed-layers with defined structural properties. Thin Solid Films 2003, 427, 46–50. [Google Scholar] [CrossRef]
- Seif, J.P.; Descoeudres, A.; Nogay, G.; Hanni, S.; De Nicolas, S.M.; Holm, N.; Geissbuhler, J.; Hessler-Wyser, A.; Duchamp, M.; Dunin-Borkowski, R.E.; et al. Strategies for doped nanocrystalline silicon integration in silicon heterojunction solar cells. IEEE J. Photovolt. 2016, 6, 1132–1140. [Google Scholar] [CrossRef]
- Djeridane, Y.; Abramov, A.; Roca i Cabarrocas, P. Silane versus silicon tetrafluoride in the growth of microcrystalline silicon films by standard radio frequency glow discharge. Thin Solid Films 2007, 515, 7451–7454. [Google Scholar] [CrossRef]
- Sriraman, S.; Agarwal, S.; Aydil, E.S.; Maroudas, D. Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 2002, 418, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Z.; Zhao, C.Y.; Basa, C.; Gao, W.X.; Irene, E.A. Effects of hydrogen surface pretreatment of silicon dioxide on the nucleation and surface roughness of polycrystalline silicon films prepared by rapid thermal chemical vapor deposition. Appl. Phys. Lett. 1996, 69, 485–487. [Google Scholar] [CrossRef]
- Fioretti, A.N.; Boccard, M.; Monnard, R.; Ballif, C. Low-temperature p-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. IEEE J. Photovolt. 2019, 9, 1158–1165. [Google Scholar] [CrossRef]
- Shimakawa, K. Percolation-controlled electronic properties in microcrystalline silicon: Effective medium approach. J. Non Cryst. Solids 2000, 266–269, 223–226. [Google Scholar] [CrossRef]
- Kim, D.Y.; Van Swaaij, R.A.C.M.M.; Zeman, M. Optical and electrical stimulation of µc-Si: H solar cells: Effect of substrate morphology and crystalline fraction. IEEE J. Photovolt. 2014, 4, 22–27. [Google Scholar] [CrossRef]
- Hamma, S.; Cabarrocas, P. Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications. Sol. Energy Mater. Sol. Cells 2001, 69, 217–239. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Richter, A.; Hermle, M.; Glunz, S. Crystalline silicon solar cells reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 2013, 3, 1184–1191. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 27 July 2020).
- Helmoholtz Zentrum Berlin (HZB). World Record: Efficiency of Perovskite Silicon Tandem Solar Cell Jumps to 29.15 per Cent. Available online: https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21020,sprache=en;seitenid=1 (accessed on 27 July 2020).
- Jäger, K.; Korte, L.; Rech, B.; Albrecht, S. Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Opt. Express 2017, 25, A473. [Google Scholar] [CrossRef]
- Morales-Vilches, A.B.; Decker, D.; Mazzarella, L.; Korte, L.; Schlatmann, R.; Sontag, D.; Stannoswki, B. Nanocrystalline n-type silicon front surface field layers: From research to industry applications in silicon heterojunction solar cells. In Proceedings of the 35th European Photovoltaic Solar Energy Conference and Exhibition, Brussels, Belgium, 28 September 2018; pp. 422–425. [Google Scholar]
- Olibet, S.; Vallat-Sauvain, E.; Fesquet, L.; Monachon, C.; Hessler-Wyser, A.; Damon-Lacoste, J.; De Wolf, S.; Ballif, C. Properties of interfaces in amorphous/crystalline silicon heterojunctions. Phys. Status Solidi Appl. Mater. Sci. 2010, 207, 651–656. [Google Scholar] [CrossRef]
- Mazzarella, L.; Lin, Y.; Kirner, S.; Morales-Vilches, A.B.; Korte, L.; Albrecht, S.; Crossland, E.; Stannowski, B.; Case, C.; Snaith, H.J.; et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 2019, 9, 1803241. [Google Scholar] [CrossRef]
- Mazzarella, L.; Werth, M.; Jäger, K.; Jošt, M.; Korte, L.; Albrecht, S.; Schlatmann, R.; Stannowski, B. Infrared photocurrent management in monolithic perovskite/silicon heterojunction tandem solar cells by using a nanocrystalline silicon oxide interlayer. Opt. Express 2018, 26, A487–A497. [Google Scholar] [CrossRef]
- Sahli, F.; Werner, J.; Kamino, B.A.; Bräuninger, M.; Monnard, R.; Paviet-salomon, B.; Barraud, L.; Ding, L.; Leon, J.J.D.; Sacchetto, D.; et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 2018, 17, 820–826. [Google Scholar] [CrossRef]
- Cojocaru, L.; Wienands, K.; Kim, T.W.; Uchida, S.; Bett, A.J.; Rafizadeh, S.; Goldschmidt, J.C.; Glunz, S.W. Detailed investigation of evaporated perovskite absorbers with high crystal quality on different substrates. ACS Appl. Mater. Interfaces 2018, 10, 26293–26302. [Google Scholar] [CrossRef] [PubMed]
Substrate Front/Rear | Material | t (nm) | JSC (mA/cm2) | VOC (mV) | FF (%) | H (%) |
---|---|---|---|---|---|---|
TEXT/TEXT | (n)nc-Si:H | 12 | 37.8 | 729 | 79.7 | 21.9 |
(n)nc-SiOx:H | 10 | 38.3 | 731 | 80.3 | 22.5 | |
FLAT/TEXT | (n)nc-SiOx:H | 17 | 35.7 | 719 | 79.7 | 20.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzarella, L.; Morales-Vilches, A.B.; Korte, L.; Schlatmann, R.; Stannowski, B. Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications. Coatings 2020, 10, 759. https://doi.org/10.3390/coatings10080759
Mazzarella L, Morales-Vilches AB, Korte L, Schlatmann R, Stannowski B. Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications. Coatings. 2020; 10(8):759. https://doi.org/10.3390/coatings10080759
Chicago/Turabian StyleMazzarella, Luana, Anna B. Morales-Vilches, Lars Korte, Rutger Schlatmann, and Bernd Stannowski. 2020. "Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications" Coatings 10, no. 8: 759. https://doi.org/10.3390/coatings10080759
APA StyleMazzarella, L., Morales-Vilches, A. B., Korte, L., Schlatmann, R., & Stannowski, B. (2020). Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications. Coatings, 10(8), 759. https://doi.org/10.3390/coatings10080759