Comparative Study of Tribomechanical Properties of HiPIMS with Positive Pulses DLC Coatings on Different Tools Steels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Substrate
2.2. Film Deposition Technique
- Ar etching: a direct current (DC)-pulsed bias voltage of −500 V and a frequency of 150 kHz was used to establish an Ar+ discharge at the substrate for 15 min;
- Cr-HiPIMS deposition of a bonding layer: the target was operated in HiPIMS mode with a pulsing time of 150 μs, repetition frequency of 300 Hz and an average power density of 5 W/cm2. The voltage bias of the substrate was adjusted from −750 to −50 V, and a deposition rate of 0.5 μm/h was obtained for a three-fold rotation at a substrate voltage bias of −50 V;
- Deposition of the WC interlayer: DC-pulsed mode with the following parameters was used to deposit WC—a power density of 7.5 W/cm2, a frequency rate of 150 kHz and a pulse width of 2.7 μs. Moreover, the substrate was biased at −50 V. The deposition rate obtained in this way for a three-fold rotation was 0.38 μm/h;
- (A) Deposition of the ta-C coatings: the pulses applied to the graphite target reached power densities of up to 10 W/cm2. During ta-C deposition, both C targets are used at the same time. One of them operated in DC-pulsed mode and the other in HiPIMS mode. A repetition frequency of 150 kHz and a pulse width of 2.4 μs were used to apply the DC-pulsed mode. The operation parameters of the HiPIMS mode were a pulsing time of 150 μs, repetition frequency of 300 Hz and a positive pulse of 350 V. A substrate voltage bias of −50 V was applied, and the deposition rate obtained for a three-fold rotation was 0.25 μm/h;
- (B) Deposition of WC:C coatings: the graphite targets were operated under the same conditions mentioned in 4a. WC was codeposited with carbon at 0.75 W/cm2, a frequency rate of 150 kHz and a pulse width of 2.7 μs. The deposition rate obtained for a three-fold rotation was 0.3 μm/h.
2.3. Thickness, Structural Properties and Profile Composition
2.4. Mechanical and Tribological Tests
- The first critical load (LC1): the first cohesive failure observed;
- The second critical load (LC2): the first adhesive failure appreciated;
- The third critical load (LC3): a total delamination of the coating or even a critical defect is clearly observed in the reference substrate.
3. Results
3.1. Thickness, Structural Properties and Profile Composition
- HSS substrate;
- Cr bonding layer is not visible due to low resolution for observing 10 nm of thickness;
- WC interlayer;
- DLC coating;
- Pt coating. There is a double layer of Pt coating on top. As the coating has been milled with FIB (focused ion beam) for cross-sectional (XS) observation, a Pt layer has been deposited on top in order to prevent the etching of the DLC coating due to ion irradiation.
3.2. Nanoindentation Tests
3.3. Adhesion Tests
3.4. Friction and Wear Tests
4. Discussion
5. Conclusions
- Raman spectroscopy showed that ta-C coatings have a higher number of sp3 bonds, which is consistent with these coatings being harder than those of WC:C;
- The nanohardness of coatings was around 25 Gpa for the ta-C and around 14 GPa for the WC:C coating;
- The relationship between resistance to plastic deformation and resistance to wear was proven, since the higher values of H3/E2 correlated with higher values of resistance to wear. It should be noted that this is a sign that hardness is not the only parameter that determines the wear behavior of coatings;
- The coefficient of friction (COF) against alumina was considerably lower than that of the substrate (0.7) in the case of both coatings in all materials, obtaining values of around 0.07 for the ta-C coating and 0.1 for the WC:C coating;
- The coatings showed very good adhesion to the substrate. The coatings of WC:C presented better results than those of ta-C, reaching values greater than 70 N for the critical load LC3. Vanadis 4 and vancron presented better adhesion than K360, as shown by the Lc2 values obtained for the WC:C coating;
- The two coatings improve the wear resistance of the substrate, as demonstrated by the values obtained for volume loss and wear coefficient, especially for the case of ta-C. The WC:C coatings showed wear coefficient values one order of magnitude lower than the substrate (10−7), while in the case of ta-C values, values two orders of magnitude lower than the substrate were achieved (10−8).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donnet, C.; Erdemir, A. New horizon in the tribology of diamondlike carbon films. Surf. Eng. 2008, 24, 399–401. [Google Scholar] [CrossRef] [Green Version]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39. [Google Scholar] [CrossRef]
- Pierson, H.O. Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications; Noyes Publication: Park Ridge, NJ, USA, 1993. [Google Scholar]
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R 2002, 37, 129–281. [Google Scholar] [CrossRef] [Green Version]
- Bewilogua, K.; Hofmann, D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014, 242, 214–225. [Google Scholar] [CrossRef]
- Bull, S.J. Tribology of carbon coatings: DLC, diamond and beyond. Diam. Relat. Mater. 1995, 4, 827–836. [Google Scholar] [CrossRef]
- Saxena, P.; Schinzel, M.; Andrich, M.; Modler, N. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure. Mater. Sci. Eng. 2016, 149, 012124. [Google Scholar] [CrossRef]
- Rodríguez, R.J.; Garcı́a, J.A.; Martinez, R.; Lerga, B.; Rico, M.; Fuentes, G.G.; Guette, A.; Labruguere, C.; Lahaye, M. Tribological metal-carbon coatings deposited by PVD magnetron sputtering. Appl. Surf. Sci. 2004, 235, 53–59. [Google Scholar] [CrossRef]
- Dai, M.; Zhou, K.; Yuan, Z.; Ding, Q.; Fu, Z. The cutting performance of diamond and DLC-coated cutting tools. Diam. Relat. Mater. 2000, 9, 1753–1757. [Google Scholar] [CrossRef]
- Fukui, H.; Okida, J.; Omori, N.; Moriguchi, H.; Tsuda, K. Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf. Coat. Technol. 2004, 187, 70–76. [Google Scholar] [CrossRef]
- Silva, F.; Martinho, R.P.; Alexandre, R.; Baptista, A. Increasing the wear resistance of molds for injection of glass fiber reinforced plastics. Wear 2011, 271, 2494–2499. [Google Scholar] [CrossRef] [Green Version]
- Hauert, R.; Thorwarth, K.; Thorwarth, G. An overview on diamond-like carbon coatings in medical applications. Surf. Coat. Technol. 2013, 233, 119–130. [Google Scholar] [CrossRef]
- Treutler, C.P.O. Industrial use of plasma-deposited coatings for components of automotive fuel injection systems. Surf. Coat. Technol. 2005, 200, 1969–1975. [Google Scholar] [CrossRef]
- Novikov, N.V.; Gontar, A.G.; Khandozhko, S.I.; Kutsay, A.M.; Tkach, V.N.; Gorokhov, V.Y.; Belitsky, G.M.; Vasinc, A.V. Protective diamond-like coatings for optical materials and electronic devices. Diam. Relat. Mater. 2000, 9, 792–795. [Google Scholar] [CrossRef]
- Morshed, M.M.; McNamara, B.P.; Cameron, D.C.; Hashmi, M.S.J. Stress and adhesion in DLC coatings on 316L stainless steel deposited by a neutral beam source. J. Mater. Process. Technol. 2003, 141, 127–131. [Google Scholar] [CrossRef]
- Mosaner, P.; Bonelli, M.; Miotello, A. Pulsed laser deposition of diamond-like carbon films: Reducing internal stress by thermal annealing. Appl. Surf. Sci. 2003, 208–209, 561–565. [Google Scholar] [CrossRef]
- Neuville, S.; Matthews, A. A perspective on the optimisation of hard carbon and related coatings for engineering applications. Thin Solid Films 2007, 515, 6619–6653. [Google Scholar] [CrossRef]
- Silva, S.R.P. (Ed.) Properties of Amorphous Carbon; The Institution of Engineering and Technology: London, UK, 2008; pp. 311–312. [Google Scholar]
- McWilliams, A. Diamond, Diamond-Like and CBN Films & Coating Products. BCC Res. 2010, 7, 160. [Google Scholar]
- Ghiotti, A.; Bruschi, S. Tribological behaviour of DLC coatings for sheet metal forming tools. Wear 2011, 271, 2454–2458. [Google Scholar] [CrossRef]
- Sgarabotto, F.; Ghiotti, A.; Bruschi, S. Novel experimental set-up to investigate the wear of coatings for sheet metal forming tools. Key Eng. Mater. 2013, 554–557, 825–832. [Google Scholar] [CrossRef]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 2006, 513, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Santiago, J.; Fernández-Martínez, I.; Kozák, T.; Capek, J.; Wennberg, A.; Molina-Aldareguia, J.; Bellido-González, V.; González-Arrabal, R.; Monclús, M.A. The influence of positive pulses on HiPIMS deposition of hard DLC coatings. Surf. Coat. Technol. 2019, 358, 43–49. [Google Scholar] [CrossRef]
- Bhushan, B. Modern Tribology Handbook; Boca Raton (Fla.); CRC Press: Boca Raton, FL, USA, 2001; pp. 102–136. [Google Scholar]
- Wang, Q.J.; Chung, Y.-W. Encyclopedia of Tribology; Springer US: Boston, MA, USA, 2013; pp. 794–800. [Google Scholar]
- Kasiorowski, T.; Lin, J.; Soares, P.; Lepienski, C.M.; Neitzke, C.A.; de Souza, G.B.; Torres, R.D. Microstructural and tribological characterization of DLC coatings deposited by plasma enhanced techniques on steel substrates. Surf. Coat. Technol. 2019, 389, 125615. [Google Scholar] [CrossRef]
- Duminica, F.-D.; Belchi, R.; Libralesso, L.; Mercier, D. Investigation of Cr(N)/DLC multilayer coatings elaborated by PVD for high wear resistance and low friction applications. Surf. Coat. Technol. 2018, 337, 396–403. [Google Scholar] [CrossRef]
- Shioga, P.H.T.; Binder, C.; Hammes, G.; Klein, A.N.; de Mello, J.D.B. Effects of Different Plasma Nitrided Layers on the Tribological Performance of DLC Coatings. Mater. Res. 2016, 19, 1180–1188. [Google Scholar] [CrossRef] [Green Version]
- Podgornik, B.; Vižintin, J. Influence of substrate treatment on the tribological properties of DLC coatings. Diam. Relat. Mater. 2001, 10, 2232–2237. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Nakamura, M.; Zanocco, M.; Zhu, W.; Pezzotti, G.; Andreatt, F. Corrosion and scratch resistance of DLC coatings applied on chromium molybdenum steel. Surf. Coat. Technol. 2019, 378, 124944. [Google Scholar] [CrossRef]
- Avelar-Batista, J.C.; Spain, E.; Fuentes, G.G.; Sola, A.; Rodriguez, R.; Housden, J. Triode plasma nitriding and PVD coating: A successful pre-treatment combination to improve the wear resistance of DLC coatings on Ti6Al4V alloy. Surf. Coat. Technol. 2006, 201, 4335–4340. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Z.; An, X.; Shao, T.; Xiao, S.; Cui, S.; Lin, H.; Fu, R.K.Y.; Tian, X.; Chu, P.K.; et al. Improved interfacial adhesion between TiAlN/DLC multi-layered coatings by controlling the morphology via bias. Surf. Coat. Technol. 2017, 331, 15–20. [Google Scholar] [CrossRef]
- Santiago, J.A.; Fernández-Martínez, I.; Wennberg, A.; Molina-Aldareguia, J.M.; Castillo-Rodríguez, M.; Rojas, T.C.; Sánchez-López, J.C.; González, M.U.; García-Martín, J.M.; Li, H.; et al. Adhesion enhancement of DLC hard coatings by HiPIMS metal ion etching pretreatment. Surf. Coat. Technol. 2018, 349, 787–796. [Google Scholar] [CrossRef]
- García, J.A.; Rivero, P.J.; Barba, E.; Fernández, I.; Santiago, J.A.; Palacio, J.F.; Fuente, G.G.; Rodríguez, R.J. A Comparative Study in the Tribological Behavior of DLC Coatings Deposited by HiPIMS Technology with Positive Pulses. Metals 2020, 10, 174. [Google Scholar] [CrossRef] [Green Version]
- Tobola, D.; Brostow, W.; Czechowski, K.; Rusek, P. Improvement of wear resistance of some cold working tool steels. Wear 2017, 382–383, 29–39. [Google Scholar] [CrossRef]
- Kim, H.; Kang, J.-Y.; Son, D.; Lee, T.-H.; Cho, K.-M. Evolution of carbides in cold-work tool steels. Mater. Charact. 2015, 107, 376–385. [Google Scholar] [CrossRef]
- Kanga, J.-Y.; Kima, H.; Sonc, D.; Kimd, C.; Park, S.K.; Lee, T.-H. Hot-worked microstructure and hot workability of cold-work tool steels. Mater. Charact. 2018, 135, 8–17. [Google Scholar] [CrossRef]
- Fukaura, K.; Sunada, H.; Yokoyama, Y.; Teramoto, K.; Yokoi, D.; Tsujii, N. Improvement of strength and toughness of SKD11 type cold work tool steel. Tetsu-to-Hagané 1998, 84, 230–235. [Google Scholar] [CrossRef]
- Fukaura, K.; Yokoyama, Y.; Yokoi, D.; Tsujii, N.; Ono, K. Fatigue of cold-work tool steel: Effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observation. Metall. Mater. Trans. A 2004, 35, 1289–1300. [Google Scholar] [CrossRef]
- Arieta, F.; Netto, E.B.M.; Reguly, A.; Pannes, W.K.; Beutler, U.; van Soest, F.; Ernst, C. Impact properties of vacuum heat treated AISI D2 and 8%Cr-cold work tool steels. J. ASTM Int. 2011, 8, 129–145. [Google Scholar] [CrossRef]
- Picas, I.; Cuadrado, N.; Casellas, D.; Goez, A.; Llanes, L. Microstructural effects on the fatigue crack nucleation in cold work tool steels. Proc. Eng. 2010, 2, 1777–1785. [Google Scholar] [CrossRef]
- Arslan, F.K.; Altinsoy, I.; Hatman, A.; Ipek, M.; Zeytin, S.; Bindal, C. Characterization of cryogenic heat treated Vanadis 4 PM cold work tool steel. Vacuum 2011, 86, 370–373. [Google Scholar] [CrossRef]
- Oppenkowski, A.; Weber, S.; Theisen, W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. J. Mater. Process. Technol. 2010, 210, 1949–1955. [Google Scholar] [CrossRef]
- Riofano, R.M.M.; Casteletti, L.C.; Canale, L.C.F.; Totten, G.E. Improved wear resistance of P/M tool steel alloy with different vanadium contents after ion nitriding. Wear 2008, 265, 57–64. [Google Scholar] [CrossRef]
- Ko, D.-C.; Kim, S.-G.; Kim, B.-M. Influence of microstructure on galling resistance of cold-work tool steels with different chemical compositions when sliding against ultra-high-strength steel sheets under dry condition. Wear 2015, 338–339, 362–371. [Google Scholar] [CrossRef]
- Gåård, A.; Krakhmalev, P.; Bergström, J. Wear mechanisms in deep drawing of carbon steel—Correlation to laboratory testing. Lubr. Sci. 2008, 14, 1–9. [Google Scholar] [CrossRef]
- Kim, H.; Han, S.; Yan, Q.; Altan, T. Evaluation of tool materials, coatings and lubricants in forming galvanized advanced high strength steels (AHSS). CIRP Ann. Manuf. Technol. 2008, 14, 299–304. [Google Scholar] [CrossRef]
- García, J.A.; Rodríguez, R.J.; Martínez, R.; Fernández, C.; Fernández, A.; Payling, R. Depth profiling of industrial surface treatments by rf and dc glow discharge spectrometry. Appl. Surf. Sci. 2004, 235, 97–102. [Google Scholar] [CrossRef]
- ASTM G99-17. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus; American Society for Testing and Materials: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Bec, S.; Tonck, A.; Loubet, J.L. A simple guide to determine elastic properties of films on substrate from nanoindentation experiments. Philos. Mag. 2006, 86, 5347–5358. [Google Scholar] [CrossRef] [Green Version]
- Botero, C.; Jimenez-Pique, E.; Seuba, J.; Kulkarni, T.; Sarin, V.; Llanes, L. Mechanical behavior of 3Al2O3·2SiO2 films under nanoindentation. Acta Mater. 2012, 60, 5889–5899. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Czyzniewski, A. Optimising deposition parameters of W-DLC coatings for tool materials of high speed steel and cemented carbide. Vacuum 2012, 86, 2140–2147. [Google Scholar] [CrossRef]
- Sun, W.; Li, M.; Wu, M.; Hu, J. Uniformity of Si-containing diamond-like carbon films deposited at different positions by mesh hollow cathode discharge. Results Phys. 2019, 14, 102480. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Charitidis, C.A. Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int. J. Refract. Hard Met. 2010, 28, 51–70. [Google Scholar] [CrossRef]
- Galvan, D.; Pei, Y.T.; De Hosson, J.T.M. Deformation and failure mechanism of nano-composite coatings under nano-indentation. Surf. Coat. Technol. 2006, 200, 6718–6726. [Google Scholar] [CrossRef] [Green Version]
- Lopes, B.B.; Rangel, R.C.C.; Antonio, C.A.; Durrant, S.F.; Cruz, N.C.; Rangel, E.C. Mechanical and Tribological Properties of Plasma Deposited a-C:H:Si:O Films; Nanoindentation in Materials Science IntechOpen: London, UK, 2012; pp. 179–202. [Google Scholar]
- Charitidis, C.; Logothetidis, S.; Douka, P. Nanoindentation and nanoscratching studies of amorphous carbon films. Diam. Relat. Mater. 1999, 8, 558–562. [Google Scholar] [CrossRef]
- Le Bourhis, E. Indentation mechanics and its application to thin film characterization. Vacuum 2008, 82, 1353–1359. [Google Scholar] [CrossRef]
- Mayrhofer, P.H.; Mitterer, C.; Musil, J. Structure–property relationships in single- and dual-phase nanocrystalline hard coatings. Surf. Coat. Technol. 2003, 174–175, 725–731. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Kuang, X. Effect of substrate bias on microstructure and mechanical properties of WCDLC coatings deposited by HiPIMS. Surf. Coat. Technol. 2018, 352, 33–41. [Google Scholar] [CrossRef]
- Luo, H.; Sun, H.; Gao, F.; Billard, A. Mechanical properties, thermal stability and oxidation resistance of HfC/a-C:H films deposited by HiPIMS. J. Alloys Compd. 2020, 847, 156538. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Fernández, A. Doping and Alloying Effects on DLC Coatings. In Tribology of Diamond-Like Carbon Films; Donnet, C., Erdemir, A., Eds.; Springer: Boston, MA, USA, 2008; pp. 311–338. [Google Scholar]
- Moreno-Bárcenas, A.; Alvarado-Orozco, J.M.; Carmona, J.M.G.; Mondragón-Rodríguez, G.C.; González-Hernández, J.; García-García, A. Synergistic effect of plasma nitriding and bias voltage on the adhesion of diamond-like carbon coatings on M2 steel by PECVD. Surf. Coat. Technol. 2019, 374, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Liu, J.; Wan, Y.; Pu, J. Corrosion and tribocorrosion behavior of W doped DLC coating in artificial seawater. Diam. Relat. Mater. 2020, 109, 108019. [Google Scholar] [CrossRef]
- Voevodin, A.A.; O’Neill, J.P.; Zabinski, J.S. Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites. Thin Solid Films 1999, 342, 194–200. [Google Scholar] [CrossRef]
- Wang, L.; Lin, J.; Zhu, C.; Li, G.; Kuang, X.; Huang, K. Effects of HiPIMS pulse-length on plasma discharge and on the properties of WC-DLC coatings. Appl. Surf. Sci. 2019, 487, 526–538. [Google Scholar] [CrossRef]
- Tillman, W.; Lopes Dias, N.; Stangier, D. Influence of plasma nitriding pretreatments on the tribo-mechanical properties of DLC coatings sputtered on AISI H11. Surf. Coat. Technol. 2019, 357, 1027–1036. [Google Scholar] [CrossRef]
- Makówka, M.; Pawlak, W.; Konarski, P.; Wendler, B.; Szymanowski, H. Modification of magnetron sputter deposition of nc-WC/a-C(:H) coatings with an additional RF discharge. Diam. Relat. Mater. 2019, 98, 107509. [Google Scholar] [CrossRef]
- Bouzakis, K.-D.; Vidakis, N.; Michailidis, N.; Leyendecker, T.; Erkens, G.; Fuss, G. Quantification of properties modification and cutting performance of (Ti1−xAlx)N coatings at elevated temperatures. Surf. Coat. Technol. 1999, 120–121, 34–43. [Google Scholar] [CrossRef]
Steel | C (%) | Si (%) | Cr (%) | N (%) | V (%) | Mn (%) | Mo (%) |
---|---|---|---|---|---|---|---|
K360 | 1.25 | 0.9 | 8.75 | - | 1.18 | 0.35 | 2.7 |
Vanadis 4 | 1.4 | 0.4 | 4.7 | - | 3.7 | 0.4 | 3.5 |
Vancron | 1.3 | 1.8 | 4.5 | 1.8 | 10 | - | - |
Substrate and Coating | G(cm−1) | I (G) | D(cm−1) | I (D) | I (D)/I (G) |
---|---|---|---|---|---|
K360 WC:C | 1.573 | 5.704 | 1.360 | 5.3137 | 0.93 |
K360 ta-C | 1.527 | 12.192 | 1.326 | 9.058 | 0.74 |
Vanadis 4 ta-C | 1.521 | 13.058 | 1.326 | 9.058 | 0.69 |
Vanadis 4 WC:C | 1.568 | 9.240 | 1.381 | 8.4057 | 0.91 |
Vancron WC:C | 1.560 | 8.155 | 1.383 | 7.446 | 0.91 |
Vancron ta-C | 1.536 | 6.206 | 1.328 | 4.429 | 0.71 |
Substrate | DLC Coating | Hardness (GPa) | Young Modulus (GPa) | |
---|---|---|---|---|
K360 | ta-C | 24 ± 3 | 311 ± 27 | 0.148 |
K360 | WC:C | 14 ± 1 | 257 ± 22 | 0.043 |
Vanadis 4 | ta-C | 26 ± 2 | 343 ± 30 | 0.152 |
Vanadis 4 | WC:C | 15 ± 2 | 277 ± 27 | 0.041 |
Substrate and Coating | Lc1 (N) | Lc2 (N) | Lc3 (N) |
---|---|---|---|
K360 WC:C | 18.9 ± 0.7 | 32.9 ± 0.6 | 73.8 ± 4.0 |
Vanadis 4 WC:C | 19.2 ± 0.4 | 58.8 ± 1.3 | 77.6 ± 2.3 |
Vancron WC:C | 19.0 ± 2.1 | 59.8 ± 0.7 | 77.1 ± 3.9 |
K360 ta-C | - | 29.6 ± 2.5 | 50.7 ± 3.7 |
Vanadis 4 ta-C | - | 25.0 ± 3.1 | 40.3 ± 1.1 |
Vancron ta-C | - | 24.4 ± 4.2 | 50.4 ± 5.4 |
Reference | Coating | Deposition Technique | Lc2 (N) |
---|---|---|---|
[26] | DLC | Nitrided substrate + HiPIMS | 25 |
[27] | Cr(N)/DLC multilayer | DC magnetron sputtering | 10 |
[34] | ta-C | HiPIMS with positive pulses | 18.86 |
[34] | WC:C | HiPIMS with positive pulses | 40.87 |
[66] | DLC | Plasma-enhanced chemical vapordeposition (PECVD) | 12 |
[67] | W-doped DLC | DC magnetron sputtering | 42 |
Sample | Friction Coefficient | ||||
---|---|---|---|---|---|
Uncoated vancron | 0.67 | (9.64 ± 10) × 10−10 | (2.67 ± 2.7) × 10−10 | (1.73 ± 1.69) × 10−5 | (4.88 ± 4.1) × 10−6 |
Uncoated vanadis 4 | 0.71 | (7.73 ± 1.5) × 10−10 | (1.64 ± 0.48) × 10−10 | (1.70 ± 0.06) × 10−5 | (3.62 ± 0.47) × 10−6 |
Uncoated K360 | 0.76 | (1.21 ± 1.05) × 10−8 | (4.64 ± 6.1) × 10−10 | (4.87 ± 0.77) × 10−4 | (1.31 ± 0.54) × 10−5 |
Vancron WC:C | 0.097 | (1.08 ± 0.38) × 10−10 | (2.43 ± 0.1) × 10−11 | (2.30 ± 1.28) × 10−6 | (4.98 ± 1.04) × 10−7 |
Vanadis 4 WC:C | 0.15 | (1.16 ± 0.41) × 10−10 | (3.44 ± 1.08) × 10−11 | (2.35 ± 0.84) × 10−6 | (6.79 ± 1.51) × 10−7 |
K360 WC:C | 0.112 | (1.12 ± 0.24) × 10−10 | (3.65 ± 0.73) × 10−11 | (2.24 ± 0.34) × 10−6 | (7.44 ± 1.89) × 10−7 |
Vancron ta-C | 0.067 | (1.74 ± 0.67) × 10−11 | (3.85 ± 1.14) × 10−12 | (3.51 ± 1.33) × 10−7 | (7.59 ± 1.34) × 10−8 |
Vanadis 4 ta-C | 0.07 | (3.60 ± 2.93) × 10−12 | (2.66 ± 0.29) × 10−12 | (7.17 ± 5.5) × 10−8 | (5.37 ± 0.53) × 10−8 |
K360 ta-C | 0.105 | (2.65 ± 0.73) × 10−11 | (3.43 ± 1.05) × 10−12 | (5.29 ± 1.1) × 10−7 | (6.72 ± 0.72) × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claver, A.; Jiménez-Piqué, E.; Palacio, J.F.; Almandoz, E.; Fernández de Ara, J.; Fernández, I.; Santiago, J.A.; Barba, E.; García, J.A. Comparative Study of Tribomechanical Properties of HiPIMS with Positive Pulses DLC Coatings on Different Tools Steels. Coatings 2021, 11, 28. https://doi.org/10.3390/coatings11010028
Claver A, Jiménez-Piqué E, Palacio JF, Almandoz E, Fernández de Ara J, Fernández I, Santiago JA, Barba E, García JA. Comparative Study of Tribomechanical Properties of HiPIMS with Positive Pulses DLC Coatings on Different Tools Steels. Coatings. 2021; 11(1):28. https://doi.org/10.3390/coatings11010028
Chicago/Turabian StyleClaver, Adrián, Emilio Jiménez-Piqué, José F. Palacio, Eluxka Almandoz, Jonathan Fernández de Ara, Iván Fernández, José A. Santiago, Eneko Barba, and José A. García. 2021. "Comparative Study of Tribomechanical Properties of HiPIMS with Positive Pulses DLC Coatings on Different Tools Steels" Coatings 11, no. 1: 28. https://doi.org/10.3390/coatings11010028
APA StyleClaver, A., Jiménez-Piqué, E., Palacio, J. F., Almandoz, E., Fernández de Ara, J., Fernández, I., Santiago, J. A., Barba, E., & García, J. A. (2021). Comparative Study of Tribomechanical Properties of HiPIMS with Positive Pulses DLC Coatings on Different Tools Steels. Coatings, 11(1), 28. https://doi.org/10.3390/coatings11010028