Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Mock-Ups
2.2. Exposure to Artificial Solar Radiation
2.3. Analytical Methods
3. Results and Discussion
3.1. Optical Coherence Tomography
3.2. Reflection FT-IR Spectroscopy
3.3. Raman Spectroscopy
3.4. X-ray Fluorescence Spectroscopy
3.5. Artificial Aging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nevin, A.; Sawicki, M. Heritage Wood: Investigation and Conservation of Art on Wood; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Monaco, A.L.; Balletti, F.; Pelosi, C. Wood in cultural heritage. Properties and conservation of historical wooden artefacts. Eur. J. Sci. Theol. 2018, 14, 161–171. [Google Scholar]
- Echard, J.-P.; Thoury, M.; Berrie, B.H.; Séverin-Fabiani, T.; Vichi, A.; Didier, M.; Réfrégiers, M.; Bertrand, L. Synchrotron DUV luminescence micro-imaging to identify and map historical organic coatings on wood. Analyst 2015, 140, 5344–5353. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Kowalska, M.; Targowski, P.; Blümich, B.; Rehorn, C.; Gabrielli, V.; Bersani, D.; Licchelli, M.; et al. Non-invasive mobile technology to study the stratigraphy of ancient Cremonese violins: OCT, NMR-MOUSE, XRF and reflection FT-IR spectroscopy. Microchem. J. 2020, 155, 104754. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P.; Casoli, A.; Ferrari, M.; Lottini, S.; Cauzzi, D. Investigation on painting materials in “Madonna col Bambino e S. Giovannino” by Botticelli. In Lasers in the Conservation of Artworks; Springer Proceedings in Physics; Nimmrichter, J., Kautek, W., Schreiner, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 116, pp. 383–390. [Google Scholar]
- Rizzo, A. Progress in the application of ATR-FTIR microscopy to the study of multi-layered cross-sections from works of art. Anal. Bioanal. Chem. 2008, 392, 47–55. [Google Scholar] [CrossRef]
- Fiocco, G.; Rovetta, T.; Invernizzi, C.; Albano, M.; Malagodi, M.; Licchelli, M.; Re, A.; Giudice, A.L.; Lanzafame, G.N.; Zanini, F.; et al. A Micro-tomographic insight into the coating systems of historical bowed string instruments. Coatings 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Cennini, C. Il Libro dell’arte, o Trattato della Pittura di Cennino Cennini da Colle di Valdelsa; di Nuovo Pubblicato con Molte Correzioni e coll‛Aggiunta di Più Capitoti Tratti dai Codici Fiorentini, per cura di Gaetano e Carlo Milanesi; Felice Le-Monnier: Florence, Italy, 1859. [Google Scholar]
- Fioravanti, L. Compendio de i Secreti Rationali, di m. Leonardo Fiorauanti Bolognese, Medico, & Cirurgico. Diuiso in Cinque Libri. Opera non Meno Diletteuole, che Utile, alla Medicina, & Cirurgia, ad Alchimisti, a Quelle Donne, che si Dilettano di Belletti, & a Molte Altre Arti, & Essercitij. Con la Tauola de Tutti i Capitoli; Tarino, G.D.: Torino, Italy, 1592. [Google Scholar]
- Obataya, E. Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments. J. Cult. Herit. 2017, 27, S63–S69. [Google Scholar] [CrossRef] [Green Version]
- Ruscelli, G. Secreti di don Alessio piemontese nuouamente stampati. Con una Bellissima Aggiunta de’ Secreti Hauti da un Religioso Pratichissimo et Eccellente et Esperimentati; Vincenti Busdrago: Lucca, Italia, 1557. [Google Scholar]
- Lemery, N. Le Nouveau Recueil de Curiositez Rares & Nouvelles des plus Admirables Effets de la Nature & de l’art: Composé de Quantité de Beaux Secrets Galans & Autres dont quel-que uns ont été Tirez du Cabinet de feu Monsieur le Marquis de l’Hôpital. 1/Expérimentez & Composez par le Sieur d’Emery; Vander P.: Paris, France, 1685. [Google Scholar]
- Nagyvary, J.; Ehrman, J.M. The composite nature of the antique Italian varnish. Naturwissenschaften 1988, 75, 513–515. [Google Scholar] [CrossRef]
- Yamashiki, T.; Matsui, T.; Saitoh, M.; Okajima, K.; Kamide, K.; Sawada, T. Characterisation of cellulose treated by the steam explosion method. Part 1: Influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Brit. Polym. J. 1990, 22, 73–83. [Google Scholar] [CrossRef]
- Nakano, T.; Sugiyama, J.; Norimoto, M. Contractive force and transformation of microfibril with aqueous sodium hydroxide solution for wood. Holzforschung 2000, 54, 315–320. [Google Scholar] [CrossRef]
- Colombini, M.P.; Lucejko, J.J.; Modugno, F.; Orlandi, M.; Tolppa, E.-L.; Zoia, L. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 2009, 80, 61–70. [Google Scholar] [CrossRef]
- Weigl, M.; Pöckl, J.; Grabner, M. Selected properties of gas phase ammonia treated wood. Eur. J. Wood Wood Prod. 2009, 67, 103–109. [Google Scholar] [CrossRef]
- Čermák, P.; Dejmal, A. The effect of heat and ammonia treatment on colour response of oak wood (Quercus robur) and comparison of some physical and mechanical properties. Maderas-Cienc. Tecnol. 2013, 15, 375–389. [Google Scholar] [CrossRef]
- Tamburini, D.; Łucejko, J.-J.; Ribechini, E.; Colombini, M.-P. Snapshots of lignin oxidation and depolymerization in archaeological wood: An EGA-MS study. J. Mass Spectrom. 2015, 50, 1103–1113. [Google Scholar] [CrossRef]
- Norgate, E. Miniatura or the Art of Limning; Yale University Press: London, UK, 1997. [Google Scholar]
- Brandmair, B.; Greiner, S.-P. Stradivari Varnish: Scientific Analysis of His Finishing Technique on Selected Instruments; Serving Audio: London, UK; Munich, Germany, 2010. [Google Scholar]
- Mayerne, T.T.D. Pictoria Sculptoria & Quae Subalternarum Artium, 1620: Le Manuscrit de Turquet de Mayerne; Audin: Lyon, France, 1974. [Google Scholar]
- Michelman, J. Preliminary treatment of the wood. In Violin Varnish A Plausible Re-creation of the Varnish Used by the Italian Violin Makers Between the Years 1550 and 1750, A.D.; Michelman, J., Ed.; Joseph Michelman: Cincinnati, OH, USA, 1946. [Google Scholar]
- Beal, M. A Study of Richard Symonds: His Italian Notebooks and Their Relevance to Seventeenth Century-Painting Techniques; Garland: New York, NY, USA; London, UK, 1984. [Google Scholar]
- Tai, B.H. Stradivari’s varnish a review of scientific findings—Part I. J. Violin Soc. Am. VSA Papers 2007, XXI, 119–144. [Google Scholar]
- Bertrand, L.; Robinet, L.; Cohen, S.X.; Sandt, C.; Hô, A.-S.L.; Soulier, B.; Lattuati-Derieux, A.; Echard, J.-P. Identification of the finishing technique of an early eighteenth century musical instrument using FTIR spectromicroscopy. Anal. Bioanal. Chem. 2010, 399, 3025–3032. [Google Scholar] [CrossRef]
- Viguerie, L.D.; Pladevall, N.O.; Lotz, H.; Freni, V.; Fauquet, N.; Mestre, M.; Walter, P.; Verdaguer, M. Mapping pigments and binders in 15th century Gothic works of art using a combination of visible and near infrared hyperspectral imaging. Microchem. J. 2020, 155, 104674. [Google Scholar] [CrossRef]
- Stoner, J.H.; Rushfield, R. Conservation of Easel Paintings; Routledge: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Invernizzi, C.; Daveri, A.; Rovetta, T.; Vagnini, M.; Licchelli, M.; Cacciatori, F.; Malagodi, M. A multi-analytical non-invasive approach to violin materials: The case of Antonio Stradivari “Hellier” (1679). Microchem. J. 2016, 124, 743–750. [Google Scholar] [CrossRef]
- Fiocco, G.; Invernizzi, C.; Grassi, S.; Davit, P.; Albano, M.; Rovetta, T.; Stani, C.; Vaccari, L.; Malagodi, M.; Licchelli, M.; et al. Reflection FTIR spectroscopy for the study of historical bowed string instruments: Invasive and non-invasive approaches. Spectrochim. Acta A 2021, 245, 118926. [Google Scholar] [CrossRef]
- Monaco, A.L.; Mattei, E.; Pelosi, C.; Santancini, M. The scientific investigation for the study and conservation of the wooden model of S. Maria della Consolazione’s church (Todi, Italy). J. Cult. Herit. 2013, 14, 537–543. [Google Scholar] [CrossRef]
- Kuckova, S.; Sandu, I.C.A.; Crhova, M.; Hynek, R.; Fogas, I.; Muralha, V.S.; Sandu, A.V. Complementary cross-section based protocol of investigation of polychrome samples of a 16th century Moravian sculpture by optical, vibrational and mass spectrometric techniques. Microchem. J. 2013, 110, 538–544. [Google Scholar] [CrossRef]
- Echard, J.-P.; Bertrand, L. Complementary spectroscopic analyses of varnishes of historical musical instruments. Spectrosc. Eur. 2010, 22, 12–13. [Google Scholar]
- Fiocco, G.; Rovetta, T.; Gulmini, M.; Piccirillo, A.; Licchelli, M.; Malagodi, M. Spectroscopic analysis to characterize finishing treatments of ancient bowed string instruments. Appl. Spectrosc. 2017, 71, 2477–2487. [Google Scholar] [CrossRef]
- Rovetta, T.; Invernizzi, C.; Fiocco, G.; Albano, M.; Licchelli, M.; Gulmini, M.; Alf, G.; Fabbri, D.; Rombolà, A.; Malagodi, M. The case of Antonio Stradivari 1718 ex-San Lorenzo violin: History, restorations and conservation perspectives. J. Archaeol. Sci. Rep. 2019, 23, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Erhardt, D.; Tumosa, C.S.; Mecklenburg, M.F. Long-term chemical and physical processes in oil paint films. Stud. Conserv. 2005, 50, 143–150. [Google Scholar] [CrossRef]
- Malecki, V. Les recettes anciennes: Sources bibliographiques originales. In Proceedings of the Journée d’étude: Les Vernis de Violon, Cité de la Musique, Paris, France, 17 June 2006; pp. 4–11. (In French). [Google Scholar]
- Tripier-Deveaux, A.M. Traité Théorique et Pratique sur l’Art de Faire les Vernis: Suivi de deux Mémoires, l’un Sur les Dangers qui Menacent les Peintures Vernies d’Extérieurs, l’Autre Sur les Précautions à Prendre Pour Assurer aux Revernissages la Même Durée qu’aux Vernissages Faits sur les Peintures Fraîches; Mathias, L.: Paris, France, 1845. [Google Scholar]
- Invernizzi, C.; Daveri, A.; Vagnini, M.; Malagodi, M. Non-invasive identification of organic materials in historical stringed musical instruments by reflection infrared spectroscopy: A methodological approach. Anal. Bioanal. Chem. 2017, 409, 3281–3288. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T. Novel analytical methods for characterising binding media and protective coatings in artworks. Anal. Chim. Acta 2008, 621, 109–139. [Google Scholar] [CrossRef]
- Setragno, F.; Zanoni, M.; Antonacci, F.; Sarti, A.; Malagodi, M.; Rovetta, T.; Invernizzi, C. Feature-based analysis of the impact of ground coat and varnish on violin tone qualities. Acta Acust. United Acust. 2017, 103, 80–93. [Google Scholar] [CrossRef]
- Bruzzone, R.; Galassi, M.C. Wood species in Italian panel paintings of the fifteenth and sixteenth centuries: Historical investigation and microscopical wood identification. In Studying Old Master Paintings. Technology and Practice; Archetype Publications: London, UK, 2011; Volume 311, pp. 253–259. [Google Scholar]
- Fichera, G.V.; Albano, M.; Fiocco, G.; Invernizzi, C.; Licchelli, M.; Malagodi, M.; Rovetta, T. Innovative monitoring plan for the preventive conservation of historical musical instruments. Stud. Conserv. 2018, 63, 351–354. [Google Scholar] [CrossRef]
- Iwanicka, M.; Lanterna, G.; Lalli, C.G.; Innocenti, F.; Sylwestrzak, M.; Targowski, P. On the application of Optical Coherence Tomography as a complimentary tool in an analysis of the 13th century Byzantine Bessarion reliquary. Microchem. J. 2016, 125, 75–84. [Google Scholar] [CrossRef]
- Iwanicka, M.; Sylwestrzak, M.; Targowski, P. Optical Coherence Tomography (OCT) for examination of artworks. In Advanced Characterization Techniques, Diagnostic Tools and Evaluation Methods in Heritage Science; Bastidas, D.M., Cano, E., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp. 49–59. [Google Scholar]
- Targowski, P.; Kowalska, M.; Sylwestrzak, M.; Iwanicka, M. OCT for examination of cultural heritage objects. In Optical Coherence Tomography and Its Non-Medical Applications; Wang, M.R., Ed.; IntechOpen: London, UK; Rijeka, Croatia, 2020; pp. 147–164. [Google Scholar]
- Targowski, P.; Iwanicka, M. Optical coherence tomography: Its role in the non-invasive structural examination and conservation of cultural heritage objects—A review. Appl. Phys. A 2011, 106, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Invernizzi, C.; Rovetta, T.; Licchelli, M.; Malagodi, M. Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. Int. J. Anal. Chem. 2018, 2018, 7823248. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Abdelkader, M.F.; Wise, K. Method and Apparatus for Acquiring Raman Spectra without Background Interferences. U.S. Pantent 8570507, 29 October 2013. Available online: https://patents.google.com/patent/US8570507B1/en (accessed on 28 December 2020).
- Cooper, J.B.; Abdelkader, M.; Wise, K.L. Sequentially shifted excitation Raman spectroscopy: Novel algorithm and instrumentation for fluorescence-free Raman spectroscopy in spectral space. Appl. Spectrosc. 2013, 67, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.B.; Marshall, S.; Jones, R.; Abdelkader, M.; Wise, K.L. Spatially compressed dual-wavelength excitation Raman spectrometer. Appl. Opt. 2014, 53, 3333. [Google Scholar] [CrossRef]
- Mantler, M.; Willis, J.P.; Lachance, G.R.; Vrebos, B.A.R.; Mauser, K.E.; Kawahara, N.; Rousseau, R.M.; Brouwer, P.N. Quantitative analysis. In Handbook of Practical X-ray Fluorescence Analysis, 1st ed.; Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., Wolff, H., Eds.; Springer: Berlin, Germany, 2006; pp. 309–410. [Google Scholar]
- Glinsman, L.D. The practical application of air-path X-ray fluorescence spectrometry in the analysis of museum objects. Stud. Conserv. 2005, 50, 3–17. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Grassi, S.; Fiocco, G.; Invernizzi, C.; Rovetta, T.; Albano, M.; Davit, P.; Gulmini, M.; Stani, C.; Vaccari, L.; Licchelli, M.; et al. Managing complex synchrotron radiation FTIR micro-spectra from historic bowed musical instruments by chemometrics. In Proceedings of the 2019 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4–6 December 2019; pp. 114–119. [Google Scholar]
- Fiocco, G.; Grassi, S.; Invernizzi, C.; Rovetta, T.; Albano, M.; Davit, P.; Gulmini, M.; Stani, C.; Vaccari, L.; Licchelli, M.; et al. Chemometric tools to investigate complex Synchrotron radiation FTIR micro-spectra: Focus on historical bowed musical instruments. Acta IMEKO 2020, in press. [Google Scholar]
- CAT (Chemometric Agile Tool). Available online: http://gruppochemiometria.it/index.php/software (accessed on 15 May 2020).
- Poggialini, F.; Fiocco, G.; Campanella, B.; Legnaioli, S.; Palleschi, V.; Iwanicka, M.; Targowski, P.; Sylwestrzak, M.; Invernizzi, C.; Rovetta, T.; et al. Stratigraphic analysis of historical wooden samples from ancient bowed string instruments by laser induced breakdown spectroscopy. J. Cult. Herit. 2020, 44, 275–284. [Google Scholar] [CrossRef]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons: West Sussex, UK, 2004. [Google Scholar]
- Invernizzi, C.; Fichera, G.V.; Licchelli, M.; Malagodi, M. A non-invasive stratigraphic study by reflection FT-IR spectroscopy and UV-induced fluorescence technique: The case of historical violins. Microchem. J. 2018, 138, 273–281. [Google Scholar] [CrossRef]
- Farmer, V.C. The infra-red spectra of talc, saponite, and hectorite. Mineral. Mag. J. M. Soc. 1958, 31, 829–845. [Google Scholar] [CrossRef]
- Salisbury, J.; Walter, L.S.; Vergo, N. Mid-Infrared (2.1-25 um) Spectra of Minerals, 1st ed.; U.S. Geological Survey: Reston, VA, USA, 1987.
- Miliani, C.; Rosi, F.; Daveri, A.; Brunetti, B.G. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl. Phys. A 2011, 106, 295–307. [Google Scholar] [CrossRef]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta A 2000, 56, 3–18. [Google Scholar] [CrossRef]
- Košařová, V.; Hradil, D.; Němec, I.; Bezdička, P.; Kanický, V. Microanalysis of clay-based pigments in painted artworks by the means of Raman spectroscopy. J. Raman. Spectrosc. 2013, 44, 1570–1577. [Google Scholar] [CrossRef]
- Fiocco, G.; Rovetta, T.; Gulmini, M.; Piccirillo, A.; Canevari, C.; Licchelli, M.; Malagodi, M. Approaches for detecting madder lake in multi-layered coating systems of historical bowed string instruments. Coatings 2018, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Ciofini, D.; Striova, J.; Camaiti, M.; Siano, S. Photo-oxidative kinetics of solvent and oil-based terpenoid varnishes. Polym. Degrad. Stabil. 2016, 123, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Colombini, M.; Modugno, F.; Giannarelli, S.; Fuoco, R.; Matteini, M. GC-MS characterization of paint varnishes. Microchem. J. 2000, 67, 385–396. [Google Scholar] [CrossRef]
- Daher, C.; Pimenta, V.; Bellot-Gurlet, L. Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: Methodological approach. Talanta 2014, 129, 336–345. [Google Scholar] [CrossRef] [Green Version]
Stratigraphic Level | Mock-Up | |||||||
---|---|---|---|---|---|---|---|---|
m.A | m.B | m.C | m.D | m.E | m.F | m.G | m.H | |
Size Treatment * | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Ground coat | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Uncolored varnish *** | – | 20 ** | 10 | 10 | 10 | 10 | 20 ** | 20 ** |
Paint layer | – | – | 20 | 20 | 20 | 20 | 20 | 20 |
Total thickness | 5 | 25 | 35 | 35 | 35 | 35 | 45 | 45 |
Analytical Technique | Potential | Limits |
---|---|---|
OCT |
|
|
|
| |
|
| |
|
| |
Reflection FT-IR spectroscopy |
|
|
|
| |
|
| |
– |
| |
Raman spectroscopy |
|
|
– |
| |
– |
| |
– |
| |
XRF spectroscopy |
|
|
| – |
Linseed Oil-Colophony Varnish | ||||
---|---|---|---|---|
Assignment * | Contribution | t0 | t1 | t2 |
vas(CH3) | oil, resin | 2960 (sh) | 2960 (sh) | 2960 (sh) |
vas(CH2) | oil, resin | 2927 | 2927 | 2935 |
vs(CH3) | oil, resin | 2870 (sh) | 2870 (sh) | 2865 |
vs(CH2) | oil, resin | 2853 | 2853 | 2850 (sh) |
v(C=O) | oil | 1741 | 1741 | 1735 |
v(C=O) | resin | 1705-10 (sh) | 1705-10 (sh) | 1720 (sh) |
δ(CH3/CH2) | oil, resin | 1460 | 1460 | 1460 |
δs(CH2)–CH2–CO–O– | oil | 1412 | 1412 | 1420 |
δ(CH3) | oil, resin | 1382 | 1382 | 1382 |
v(C–O) | oil, resin | 1240 | 1240 | 1240 (sh) |
vas(C–O) δ(CH), v(C–O) | oil resin | 1175 | 1175 | 1175 |
vas(O–CH2–C) δ(CH), v(C–O) | oil resin | 1100 | 1100 | 1100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Invernizzi, C.; Fiocco, G.; Iwanicka, M.; Targowski, P.; Piccirillo, A.; Vagnini, M.; Licchelli, M.; Malagodi, M.; Bersani, D. Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study. Coatings 2021, 11, 29. https://doi.org/10.3390/coatings11010029
Invernizzi C, Fiocco G, Iwanicka M, Targowski P, Piccirillo A, Vagnini M, Licchelli M, Malagodi M, Bersani D. Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study. Coatings. 2021; 11(1):29. https://doi.org/10.3390/coatings11010029
Chicago/Turabian StyleInvernizzi, Claudia, Giacomo Fiocco, Magdalena Iwanicka, Piotr Targowski, Anna Piccirillo, Manuela Vagnini, Maurizio Licchelli, Marco Malagodi, and Danilo Bersani. 2021. "Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study" Coatings 11, no. 1: 29. https://doi.org/10.3390/coatings11010029
APA StyleInvernizzi, C., Fiocco, G., Iwanicka, M., Targowski, P., Piccirillo, A., Vagnini, M., Licchelli, M., Malagodi, M., & Bersani, D. (2021). Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study. Coatings, 11(1), 29. https://doi.org/10.3390/coatings11010029