Application of Polyaniline for Flexible Semiconductors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Synthesis Procedures
2.2.1. Aqueous Route Synthesis
2.2.2. Emulsion Route Synthesis
2.3. Characterization of the Coated Textiles
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. Atomic Force Microscopy
3.3. Infrared Spectroscopy
3.4. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gicevicius, M.; Cechanaviciute, I.A.; Ramanavicius, A. Electrochromic Textile Composites Based on Polyaniline-Coated Metallized Conductive Fabrics. J. Electrochem. Soc. 2020, 167, 155515. [Google Scholar] [CrossRef]
- Mocioiu, A.M.; Dumitrescu, I.; Cincu, C. Composite materials with conductive polymers content. DE REDACTIE 2013, 106. [Google Scholar]
- Mocioiu, A.M.; Dumitrescu, I.; Cincu, C. Electroconductive properties of nylon 6, 6 and cotton fabrics by “In Situ” polymerization of aniline in one step reaction without re-doping. J. Optoel. Adv. Mater. 2013, 15, 1106–1112. [Google Scholar]
- Bhadra, S.; Khastgir, D.; Singha, N.; Lee, H. Progress in preparation, processing and applications of polyaniline. J. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Pud, A.A.; Ogurtsov, N.; Korzhenko, A.; Shapoval, S. Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 2003, 28, 1701–1753. [Google Scholar] [CrossRef]
- Mahanta, D.; Munichandraiah, N.; Radhakrishnanc, S.; Madrasa, G.; Patil, S. Polyaniline modified electrodes for detection of dyes. Synth. Met. 2011, 161, 659–664. [Google Scholar] [CrossRef]
- Cao, Y.; Andreatta, A.; Heeger, J.; Smith, P. Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 1989, 30, 2305–2311. [Google Scholar] [CrossRef]
- Cho, W.; Park, S.J.; Kim, S. Effect of monomer concentration on interfacial synthesis of platinum loaded polyaniline nanocomplex using poly (styrene sulfonic acid). Synth. Met. 2011, 161, 2446–2450. [Google Scholar] [CrossRef]
- Huang, L.M.; Tang, W.R.; Wen, T.C. Spatially electrodeposited platinum in polyaniline doped with poly (styrene sulfonic acid) for methanol oxidation. J. Power Sources 2007, 164, 519–526. [Google Scholar] [CrossRef]
- Sudha, J.D.; Sivakala, S.; Patel, K.; Nair, P.R. Development of electromagnetic shielding materials from the conductive blends of polystyrene polyaniline-clay nanocomposite. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1647–1652. [Google Scholar] [CrossRef]
- Huang, L.-M.; Chen, C.H.; Wen, T.-C.; Gopalan, A. Effect of secondary dopants on electrochemical and spectroelectrochemical properties of polyaniline. Electrochim. Acta 2006, 51, 2756–2764. [Google Scholar] [CrossRef]
- Li, L.; Ferng, L.; Wei, Y.; Yang, C.; Ji, H.-F. Effects of acidity on the size of polyaniline-poly (sodium 4-styrenesulfonate) composite particles and the stability of corresponding colloids in water. J. Colloid Interface Sci. 2012, 381, 11–16. [Google Scholar] [CrossRef]
- Liu, F.-J.; Huan, L.-M.; Wen, T.-C.; Li, C.-F.; Huang, S.-L.; Gopalan, A. Platinum particles dispersed polyaniline-modified electrodes containing sulfonated polyelectrolyte for methanol oxidation. Synth. Met. 2008, 158, 767–774. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, J.; Li, Y.; Jiang, L.; Zhu, J.-J. Fabrication of a novel impedance cell sensor based on the polystyrene/polyaniline/Au nanocomposite. Talanta 2009, 80, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Amado, F.D.R.; Rodrigues, M.A.S.; Bertuol, D.A.; Bernardes, A.M.; Ferreira, J.Z.; Ferreira, C.A. The effect of production method on the properties of high impact polystyrene and polyaniline membranes. J. Mem. Sci. 2009, 330, 227–232. [Google Scholar] [CrossRef]
- Haberko, J.; Raczkowska, J.; Bernasik, A.; Rysz, J.; Budkowski, A.; Łuzny, W. Pattern replication in polyaniline–polystyrene thin films. Synth. Met. 2007, 157, 935–939. [Google Scholar] [CrossRef]
- Rubinger, C.P.L.; Costa, L.C.; Faez, R.; Martins, C.R.; Rubinger, R.M. Hopping conduction on PAni/PSS blends. Synth. Met. 2009, 159, 523–527. [Google Scholar] [CrossRef]
- Pyo, M.; Hwang, J.H. Conductivity changes of dodecylbezensulfonic acid-doped polyaniline during pressure loading/unloading. Synth. Met. 2009, 159, 700–704. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I. On the origin of colloidal particles in the dispersion polymerization of aniline. J. Colloid Interface Sci. 2004, 274, 489–495. [Google Scholar] [CrossRef]
- Tsotra, P.; Friedrich, K. Thermal, mechanical, and electrical properties of epoxy resin/polyaniline-dodecylbenzenesulfonic acid blends. Synth. Met. 2004, 143, 237–242. [Google Scholar] [CrossRef]
- Ozdemir, U.; Ozbay, B.; Veli, S.; Zor, S. Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chem. Eng. J. 2011, 178, 183–190. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Xu, X.; Liu, F.; Yao, H.; Zhai, G.; Hao, J.; Li, G. Preparation of PANI-coated poly (styrene-co-styrene sulfonate) nanoparticles in microemulsion media. Colloids Surf. A Physicochem. Eng. Asp. 2009, 345, 71–74. [Google Scholar] [CrossRef]
- Jang, J.; Ha, J.; Kim, H. Organic light-emitting diode with polyaniline-poly (styrene sulfonate) as a hole injection layer. Thin Solid Film. 2008, 516, 3152–3156. [Google Scholar] [CrossRef]
- Shavandi, A.; Ali, M.A. Graft polymerization onto wool fibre for improved functionality. Prog. Org. Coat. 2019, 130, 182–199. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Pang, Z.; Zhang, J.; Zhou, H.; Wei, Q. Conductivity and antibacterial properties of wool fabrics finished by polyaniline/chitosan. Coll. Surf. A 2018, 548, 117–124. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, D.; Looney, M.G.; Waters, P.J.; Wallace, G.G.; Too, C.O. A molecular template approach to integration of polyaniline into textiles. Synth. Met. 2009, 159, 1135–1140. [Google Scholar] [CrossRef]
- Standard, SR EN 1149-1:2006: Îmbrăcăminte de Protecţie. Proprietăţi Electrostatice. Partea 1: Metodă de încercare Pentru Măsurarea Rezistivităţii de Suprafaţă (Protective Clothing-Electrostatic Properties-Part 1: Test Method for Measurement of Surface Resistivity). Available online: https://standards.globalspec.com/std/891034/BS%20EN%201149-1 (accessed on 20 December 2020).
- Fu, K.; Padbury, R.; Toprakci, O.; Dirican, M.; Zhang, X. Chapter 13, Conductive textiles. In Book Engineering of High-Performance Textiles; Miao, M., Xin, J.H., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; p. 305. [Google Scholar]
- Iulian, V.A.; Florin, M.; Dan, L.; Aurora, A.; Marius, N.; Dan, G. Retrieval Analysis of Hip Prostheses. In Handbook of Bioc-eramics and Biocomposites, 1st ed.; Springer: Berlin, Germany, 2016; ISBN 978-973-720-261-1. [Google Scholar]
- Shathi, M.A.; Minzhi, C.; Khoso, N.A.; Deb, H.; Ahmed, A.; Sai, W.S. All organic graphene oxide and Poly (3, 4-ethylene dioxythiophene)-Poly (styrene sulfonate) coated knitted textile fabrics for wearable electrocardiography (ECG) monitoring. Synth. Met. 2020, 263, 116329. [Google Scholar] [CrossRef]
Assignment | W-Aq-PANI-PSSA | P-Aq-PANI-PSSA | W-E-PANI-PSSA | P-E-PANI-PSSA |
---|---|---|---|---|
C–N, N–H stretching | 3264, 3061 | 3295, 3073 | 3301 | 3289, 3067 |
C–H in benzene | 2928 | 2931 | - | 2930 |
C–H stretching | 2857 | 2857 | 2887 | 2863 |
C=O in amide | - | 1733 | - | 1733 |
N=Q=N | 1628 | 1629 | 1622 | 1629 |
N–B–N | 1517 | 1536 | 1536 | 1536 |
- | 1449 | 1467 | 1443 | 1467 |
- | - | 1412 | - | 1412 |
C–N in Q–B states | 1314, 1172 | 1370, 1184 | 1375, 1313, 1159 | 1370, 1301, 1166 |
- | - | 1264 | 1270 | 1264 |
- | 1227 | - | 1233, 1202 | - |
C–H in plan bending | - | 1147 | - | 1122 |
SO3− group of dopant | 1042 | 1042 | 1023 | 1029 |
CH3 group attached by phenyl ring | - | 931, 1004 | 992 | 955, 1004 |
Para di-substituted aromatic rings | 881 | 795 | 893 | 795, 838 |
C–H deformation out-of –plan | 665 | 678 | 665 | 678 |
Coated Textiles | Experimental Surface Resistivity (Ω·cm) SR EN 1149-1:2006 | Calculated Surface Conductivity (S/cm) | Aspect/Colour |
---|---|---|---|
W-E-PANI-PSSA | 7.3 × 103 | 1.4 × 10−4 | Uniform coated, dark green |
P-E-PANI-PSSA | 8.8 × 103 | 1.1 × 10−4 | Uniform coated, dark green |
W-Aq-PANI-PSSA | 1 × 105 | 1 × 10−5 | Uniform coated, green |
P-Aq-PANI-PSSA | 7.4 × 104 | 1.4 × 10−5 | Uniform coated, dark green |
W-E-PANI-PSSA Element | Value | Error | Error% |
R1 | 2.0412 × 106 | 2.0023 × 105 | 9.80 |
CPE-T | 2.028 × 10−12 | 8.0468 × 10−14 | 3.96 |
CPE-P | 0.99 | 0.0048 | 0.48 |
R2 | 4.9819 × 107 | 2.9389 × 105 | 0.58 |
P-E-PANI-PSSA Element | Value | Error | Error% |
R1 | 39468 | 8093 | 20.50 |
CPE-T | 3.727 × 10−12 | 8.4457 × 10−14 | 2.21 |
CPE-P | 1.009 | 0.0021 | 0.21 |
R2 | 3.6972 × 107 | 1.8207 × 105 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocioiu, A.-M.; Tudor, I.A.; Mocioiu, O.C. Application of Polyaniline for Flexible Semiconductors. Coatings 2021, 11, 49. https://doi.org/10.3390/coatings11010049
Mocioiu A-M, Tudor IA, Mocioiu OC. Application of Polyaniline for Flexible Semiconductors. Coatings. 2021; 11(1):49. https://doi.org/10.3390/coatings11010049
Chicago/Turabian StyleMocioiu, Ana-Maria, Ioan Albert Tudor, and Oana Cătălina Mocioiu. 2021. "Application of Polyaniline for Flexible Semiconductors" Coatings 11, no. 1: 49. https://doi.org/10.3390/coatings11010049
APA StyleMocioiu, A. -M., Tudor, I. A., & Mocioiu, O. C. (2021). Application of Polyaniline for Flexible Semiconductors. Coatings, 11(1), 49. https://doi.org/10.3390/coatings11010049