Characterization of Chitosan Films Incorporated with Different Substances of Konjac Glucomannan, Cassava Starch, Maltodextrin and Gelatin, and Application in Mongolian Cheese Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Film Properties
2.3.1. Viscosity and Thickness
2.3.2. Color
2.3.3. Opacity
2.3.4. Moisture Content
2.3.5. Mechanical Properties
2.3.6. Water Vapor Permeability (WVP)
2.3.7. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.8. Scanning Electron Microscopy (SEM)
2.4. The Application of the Edible Films on Mongolian Cheese
2.4.1. Microbiological Analysis
2.4.2. Weight Loss
2.4.3. Low-Field Nuclear Magnetic Resonance (LFNMR) and Magnetic Resonance Imaging (MRI)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Film Appearance and Thickness
3.2. Film Color and Opacity
3.3. Moisture Content
3.4. WVP
3.5. Mechanical Properties
3.6. FTIR
3.7. SEM
3.8. Weight Loss
3.9. TVCs and TYMCs
3.10. LFNMR and MRI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youssef, A.M.; Assem, F.M.; Abdel-Aziz, M.E.; Elaaser, M.; Ibrahim, O.A.; Mahmoud, M.; Abd El-Salam, M.H. Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chem. 2019, 270, 467–475. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Zheng, X.; Liu, S.; Lu, K.; Tang, K.; Liu, J. Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag. Shelf 2020, 24, 100485. [Google Scholar] [CrossRef]
- Jeya, J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Britto Joseph, G.; Mageshwaran, G.; Durairaj, R.B. Scaling up difficulties and commercial aspects of edible films for food packaging, A review. Trends Food Sci. Tech. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.D.; Bautista-Banos, S.; Correa-Pacheco, Z.N.; Corona-Rangel, M.L.; Ventura-Aguilar, R.I.; Del Rio-Garcia, J.C.; Ramos-Garcia, M.D. Effect of nanostructured chitosan/propolis coatings on the quality and antioxidant capacity of strawberries during storage. Coatings 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Pei, J.; Xiong, X.; Xue, F. Encapsulation of grapefruit essential oil in emulsion-based edible film prepared by plum (pruni pomesticae semen) seed protein isolate and gum acacia conjugates. Coatings 2020, 10, 784. [Google Scholar] [CrossRef]
- Gutierrez-Pacheco, M.M.; Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Lizardi-Mendoza, J.; Miranda, R.; Ayala-Zavala, J.F. Individual and combined coatings of chitosan and carnauba wax with oregano essential oil to avoid water loss and microbial decay of fresh cucumber. Coatings 2020, 10, 614. [Google Scholar] [CrossRef]
- Lin, D.; Zheng, Y.; Huang, Y.; Ni, L.; Zhao, J.; Huang, C.; Chen, X.; Chen, X.; Wu, Z.; Wu, D.; et al. Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan–nano–silicon aerogel composite edible films incorporated with okara powder. Carbohyd. Polym. 2020, 250, 116842. [Google Scholar] [CrossRef]
- Li, S.; Yi, J.; Yu, X.; Wang, Z.; Wang, L. Preparation and characterization of pullulan derivative/chitosan composite film for potential antimicrobial applications. Int. J. Biol. Macromol. 2020, 148, 258–264. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Du, Y.; Wang, L.; Tong, C.; Hu, Y.; Pang, J.; Yan, Z. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocoll. 2019, 89, 682–690. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, H.; Wu, H.; Tong, C.; Pang, J.; Wu, C. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll. 2020, 107, 105942. [Google Scholar] [CrossRef]
- Ye, X.; Kennedy, J.F.; Li, B.; Xie, B.J. Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohyd. Polym. 2006, 64, 532–538. [Google Scholar] [CrossRef]
- Lian, H.; Shi, J.; Zhang, X.; Peng, Y. Effect of the added polysaccharide on the release of thyme essential oil and structure properties of chitosan based film. Food Packag. Shelf 2020, 23, 100467. [Google Scholar] [CrossRef]
- Chakravartula, S.S.N.; Lourenço, R.V.; Balestra, F.; Bittante, A.M.Q.B.; do Amaral Sobral, P.J.; Rosa, M.D. Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag. Shelf 2020, 24, 100498. [Google Scholar] [CrossRef]
- Zhao, Y.; Teixeira, J.S.; Gänzle, M.M.; Saldaña, M.D.A. Development of antimicrobial films based on cassava starch, chitosan and gallic acid using subcritical water technology. J. Supercrit. Fluid. 2018, 137, 101–110. [Google Scholar] [CrossRef]
- Bonda, A.F.; Regis, L.; Giovannelli, L.; Segale, L. Alginate/maltodextrin and alginate/shellac gum core–shell capsules for the encapsulation of peppermint essential oil. Int. J. Biol. Macromol. 2020, 162, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Wongphan, P.; Harnkarnsujarit, N. Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. Int. J. Biol. Macromol. 2020, 156, 80–93. [Google Scholar] [CrossRef]
- Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Fatty acids and their sucrose esters affect the properties of fish skin gelatin-based film. Eur. Food. Res. Technol. 2006, 222, 650–657. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Liu, J. Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 2019, 140, 384–392. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Mahfoudh, R.; Moundanga, S.; Brachais, C.H.; Chambin, O.; Debeaufort, F. Modeling of the release kinetics of phenolic acids embedded in gelatin/chitosan bioactive-packaging films: Influence of both water activity and viscosity of the food simulant on the film structure and antioxidant activity. Int. J. Biol. Macromol. 2020, 160, 780–794. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Kurek, M.; Bornaz, S.; Debeaufort, F. Barrier, structural and mechanical properties of bovine gelatin–chitosan blend films related to biopolymer interactions. J. Sci. Food Agric. 2014, 94, 2409–2419. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, B.; Weng, Y. Preparation and characterization of genipin cross-linked and lysozyme incorporated antimicrobial sodium caseinate edible films. Food Packag. Shelf. 2020, 26, 100601. [Google Scholar] [CrossRef]
- Gao, M.L.; Hou, H.M.; Teng, X.X.; Zhu, Y.L.; Hao, H.S.; Zhang, G.L. Microbial diversity in raw milk and traditional fermented dairy products (Hurood cheese and Jueke) from Inner Mongolia, China. Genet. Mol. Res. 2017, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Zheng, Y.R.; Ma, R.C.; Wan, J.Q.; Zhou, R.; Ma, M. Kinetics of proteolysis in stored Mongolian cheese at ice-temperatures and split-split-plot analysis of storage factors affecting cheese quality. Food Res Int. 2020, 109850. [Google Scholar] [CrossRef]
- Li, Y.; Zou, Q.; Song, S.; Sun, T.; Li, J. Effects of chitosan coatings combined with resveratrol and lysozyme on the quality of Sciaenops ocellatus during refrigerated storage. J. Food Saf. 2020, 40, e12777. [Google Scholar] [CrossRef]
- Cao, W.; Yan, J.; Liu, C.; Zhang, J.; Wang, H.; Gao, X.; Yan, H.; Niu, B.; Li, W. Preparation and characterization of catechol-grafted chitosan/gelatin/modified chitosan-AgNP blend films. Carbohyd. Polym. 2020, 247, 116643. [Google Scholar] [CrossRef]
- Ebrahimi, S.E.; Koocheki, A.; Milani, E.; Mohebbi, M. Interactions between Lepidium perfoliatum seed gum–Grass pea (Lathyrus sativus) protein isolate in composite biodegradable film. Food Hydrocolloid. 2016, 54, 302–314. [Google Scholar] [CrossRef]
- Zhong, Y.; Song, X.; Li, Y. Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohyd. Polym. 2011, 84, 335–342. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Chi, F.; Tan, Z.; Liu, L. Development and characterization of novel active chitosan films containing fennel and peppermint essential oils. Coatings 2020, 10, 936. [Google Scholar] [CrossRef]
- Ahmed, S.; Ikram, S. Chitosan and gelatin based biodegradable packaging films with UV–light protection. J. Photoch. Photobio. B 2016, 163, 115–124. [Google Scholar] [CrossRef]
- De Elguea-Culebras, G.O.; Bourbon, A.I.; Costa, M.J.; Muñoz-Tebar, N.; Carmona, M.; Molina, A.; Sánchez-Vioque, R.; Berruga, M.I.; Vicente, A.A. Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’ cheese. Food Hydrocolloid. 2019, 89, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Yeamsuksawat, T.; Liang, J. Characterization and release kinetic of crosslinked chitosan film incorporated with α-tocopherol. Food Packag. Shelf 2019, 22, 100415. [Google Scholar] [CrossRef]
- Farrag, Y.; Malmir, S.; Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R. Starch edible films loaded with donut-shaped starch microparticles. Lwt-Food Sci. Technol. 2018, 98, 62–68. [Google Scholar] [CrossRef]
- Hu, D.; Wang, H.; Wang, L. Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. Lwt-Food Sci. Technol. 2016, 65, 398–405. [Google Scholar] [CrossRef]
- Mei, J.; Yuan, Y.; Wu, Y.; Li, Y. Characterization of edible starch-chitosan film and its application in the storage of Mongolian cheese. Int. J. Biol. Macromol. 2013, 57, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Cao, A.; Wang, J.; Cai, L.; Regenstein, J.; Ruan, Y.; Li, X. Effect of magnetic nanoparticles plus microwave or far–infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus Major) fillets. Food Chem. 2018, 266, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Mathieu, H.; Lenart, A.; Debeaufort, F. Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films. Innov. Food Sci. Emerg. 2012, 16, 148–154. [Google Scholar] [CrossRef]
- Abdollahi, M.; Alboofetileh, M.; Behrooz, R.; Rezaei, M.; Miraki, R. Reducing water sensitivity of alginate bio–nanocomposite film using cellulose nanoparticles. Int. J. Biol. Macromol. 2013, 54, 166–173. [Google Scholar] [CrossRef]
- Salama, H.E.; Abdel Aziz, M.S.; Sabaa, M.W. Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil. Int. J. Biol. Macromol. 2019, 139, 1162–1167. [Google Scholar] [CrossRef]
- Pereda, M.; Ponce, A.G.; Marcovich, N.E.; Ruseckaite, R.A.; Martucci, J.F. Chitosan-gelatin composites and bi–layer films with potential antimicrobial activity. Food Hydrocolloid. 2011, 25, 1372–1381. [Google Scholar] [CrossRef]
- Cozmuta, A.M.; Turila, A.; Apjok, R.; Ciocian, A.; Cozmuta, L.M.; Peter, A.; Nicula, C.; Galić, N.; Benković, T. Preparation and characterization of improved gelatin films incorporating hemp and sage oils. Food Hydrocolloid. 2015, 49, 144–155. [Google Scholar] [CrossRef]
- Guo, Y.S.; Zhu, J.J.; Xiao, F.; Hasiqimuge; Sun, J.P.; Qian, J.P.; Xu, W.L.; Li, C.D.; Guo, L. Investigation of physicochemical composition and microbial communities in traditionally fermented vrum from Inner Mongolia. J. Dairy Sci. 2019, 102, 8745–8755. [Google Scholar]
- Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocolloid. 2018, 75, 107–115. [Google Scholar] [CrossRef]
- Nair, S.B.; Alummoottil, N.J.; Moothandasserry, S.S. Chitosan–konjac glucomannan–cassava starch–nanosilver composite films with moisture resistant and antimicrobial properties for food-packaging applications. Starch-Stärke 2017, 69, 1600210. [Google Scholar] [CrossRef]
- Wang, H.; Gong, X.; Miao, Y.; Guo, X.; Liu, C.; Fan, Y.Y.; Zhang, J.; Niu, B.; Li, W. Preparation and characterization of multilayer films composed of chitosan, sodium alginate and carboxymethyl chitosan-ZnO nanoparticles. Food Chem. 2019, 283, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.X.; Kim, K.M.; Hanna, M.A.; Nag, D. Chitosan–starch composite film, preparation and characterization. Ind. Crop. Prod. 2005, 21, 185–192. [Google Scholar] [CrossRef]
- Branca, C.; D’Angelo, G.; Crupi, C.; Khouzami, K.; Rifici, S.; Ruello, G.; Wanderlingh, U. Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions, A FTIR–ATR study on chitosan and chitosan/clay films. Polymer 2016, 99, 614–622. [Google Scholar] [CrossRef]
- Li, Z.; Lin, S.; An, S.; Liu, L.; Hu, Y.; Wan, L. Preparation, characterization and anti–aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. Int. J. Biol. Macromol. 2019, 131, 420–434. [Google Scholar] [CrossRef]
- Pavoni, J.M.F.; Luchese, C.L.; Tessaro, I.C. Impact of acid type for chitosan dissolution on the characteristics and biodegradability of corn starch/chitosan based films. Int. J. Biol. Macromol. 2019, 138, 693–703. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohyd. Polym. 2020, 227, 115348. [Google Scholar] [CrossRef]
- Da Costa, J.C.M.; Miki, K.S.L.; da Silva Ramos, A.; Teixeira-Costa, B.E. Development of biodegradable films based on purple yam starch/chitosan for food application. Heliyon 2020, 6, e03718. [Google Scholar] [CrossRef]
- Picque, D.; Leclercq-Perlat, M.N.; Guillemin, H.; Perret, B.; Cattenoz, T.; Provost, J.J.; Corrieu, G. Camembert–type cheese ripening dynamics are changed by the properties of wrapping films. J. Dairy Sci. 2010, 93, 5601–5612. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tu, H.; Huang, M.; Chen, J.; Shi, X.; Deng, H.; Wang, S.; Du, Y. Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement. Int. J. Biol. Macromol. 2017, 102, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Yuceer, M.; Caner, C. Antimicrobial lysozyme–chitosan coatings affect functional properties and shelf life of chicken eggs during storage. J. Sci. Food Agric. 2014, 94, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Park, S.I.; Daeschel, M.A.; Zhao, Y. Antimicrobial chitosan–lysozyme (CL) films and coatings for enhancing microbial safety of Mozzarella cheese. J. Food Sci. 2007, 72, M355–M362. [Google Scholar] [CrossRef] [PubMed]
- Fabra, M.J.; Sánchez-González, L.; Chiralt, A. Lysozyme release from isolate pea protein and starch based films and their antimicrobial properties. Lwt-Food Sci. Technol. 2014, 55, 22–26. [Google Scholar] [CrossRef]
- Sánchez-Alonso, I.; Martinez, I.; Sánchez-Valencia, J.; Careche, M. Estimation of freezing storage time and quality changes in hake (Merluccius merluccius, L.) by low field NMR. Food Chem. 2012, 135, 1626–1634. [Google Scholar] [CrossRef] [Green Version]
- Gianferri, R.; D’Aiuto, V.; Curini, R.; Delfini, M.; Brosio, E. Proton NMR transverse relaxation measurements to study water dynamic states and age-related changes in Mozzarella di Bufala Campana cheese. Food Chem. 2007, 105, 720–726. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Cardarelli, H.R. Changes in water mobility and protein stabilization of Mozzarella cheese made under different stretching temperatures. Lwt-Food Sci. Technol. 2019, 104, 16–23. [Google Scholar] [CrossRef]
- Arimi, J.M.; Duggan, E.; O’Sullivan, M.; Lyng, J.G.; O’Riordan, E.D. Effect of moisture content and water mobility on microwave expansion of imitation cheese. Food Chem. 2010, 121, 509–516. [Google Scholar] [CrossRef]
- Khanal, B.K.S.; Bhandari, B.; Prakash, S.; Liu, D.; Zhou, P.; Bansal, N. Modifying textural and microstructural properties of low fat Cheddar cheese using sodium alginate. Food Hydrocolloid. 2018, 83, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.I.; Anderson, M.E.; Gunasekaran, S. Determining effects of freezing on pasta filata and non–pasta filata Mozzarella cheeses by nuclear magnetic resonance imaging. J. Dairy Sci. 2003, 86, 2525–2536. [Google Scholar] [CrossRef] [Green Version]
- Altan, A.; Oztop, M.H.; McCarthy, K.L.; McCarthy, M.J. Monitoring changes in feta cheese during brining by magnetic resonance imaging and NMR relaxometry. J. Food Eng. 2011, 107, 200–207. [Google Scholar] [CrossRef]
- Kuo, M.I.; Gunasekaran, S.; Johnson, M.; Chen, C. Nuclear magnetic resonance study of water mobility in pasta filata and non–pasta filata Mozzarella. J. Dairy Sci. 2001, 84, 1950–1958. [Google Scholar] [CrossRef]
- Lamanna, R.; Piscioneri, I.; Romanelli, V.; Sharma, N. A preliminary study of soft cheese degradation in different packaging conditions by 1H–NMR. Magn. Reson. Chem. 2008, 46, 828–831. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, X.; Hu, Y.; Zhang, G.; Yang, P.; Huang, B. Reduction in Hami melon (Cucumis melo var. saccharinus) softening caused by transport vibration by using hot water and shellac coating. Postharvest Biol. Technol. 2015, 110, 214–223. [Google Scholar]
Films | Thickness (μm) | Moisture Contents (%) | Viscosity (Pa·s) | Water Vapor Permeability × 10−12 g/(m·s·Pa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|
CS | 100.04 ± 7.53 a | 36.19 ± 0.88 e | 3.12 ± 0.01 BC | 8.24 ± 0.09 b | 3.36 ± 0.06 BC | 29.20 ± 1.51 AB |
KGCL | 99.30 ± 5.40 a | 32.99 ± 0.75 c | 4.71 ± 0.03 C | 8.17 ± 0.39 b | 3.57 ± 0.18 C | 68.14 ± 7.91 C |
MCL | 102.60 ± 2.95 a | 34.84 ± 0.26 d | 0.16 ± 0.02 A | 7.91 ± 0.33 b | 0.58 ± 0.03 AB | 26.99 ± 0.18 A |
GCL | 98.80 ± 4.13 a | 26.93 ± 0.60 a | 0.20 ± 0.02 AB | 8.00 ± 0.05 b | 0.44 ± 0.01 A | 36.60 ± 5.77 ABC |
CSCL | 103.50 ± 5.19 a | 28.43 ± 1.29 b | 0.81 ± 0.03 ABC | 7.01 ± 0.31 a | 3.04 ± 0.45 BC | 58.20 ± 4.66 BC |
Films | L* | a* | b* | ΔE* | Whiteness (WI) | Opacity |
---|---|---|---|---|---|---|
CS | 88.92 ± 0.43 c | −1.61 ± 0.15 a | 9.05 ± 0.17 AB | 8.91 ± 0.41 A | 85.60 ± 0.42° B | 0.58 ± 0.02 B |
KGCL | 87.62 ± 0.52 b | −0.93 ± 0.05 c | 13.72 ± 0.62 C | 13.17 ± 0.80 B | 81.50 ± 0.79° A | 1.12 ± 0.03 B |
MCL | 89.30 ± 0.13 c | −1.68 ± 0.08 a | 9.51 ± 0.46 BC | 8.92 ± 0.43 A | 85.59 ± 0.41° B | 0.36 ± 0.01 A |
GCL | 89.42 ± 0.20 c | −1.20 ± 0.07 b | 9.45 ± 0.33 BC | 8.75 ± 0.38 A | 85.76 ± 0.37° B | 0.44 ± 0.03 AB |
CSCL | 86.11 ± 0.06 a | −0.76 ± 0.04 d | 8.19 ± 0.06 A | 10.59 ± 0.07 AB | 83.86 ± 0.07° AB | 0.36 ± 0.01 A |
Films | Peak at cm−1 | ||||||
---|---|---|---|---|---|---|---|
CS | 3290.00 ± 1.00 AB | 2929.33 ± 0.58 A | 2880.00 ± 1.00 ns | 1645.33 ± 0.58 ns | 1566.33 ± 0.58 BC | 1412.00 ± 0.00 AB | 1029.00 ± 0.00 BC |
KGCL | 3291.33 ± 0.58 B | 2930.67 ± 0.58 AB | 2880.33 ± 0.58 ns | 1644.67 ± 0.58 ns | 1569.33 ± 1.53 C | 1412.33 ± 0.58 B | 1028.00 ± 0.00 ABC |
MCL | 3291.00 ± 0.00 B | 2931.00 ± 1.00 AB | 2881.33 ± 0.58 ns | 1646.00 ± 1.00 ns | 1564.67 ± 0.58 B | 1412.67 ± 0.58 B | 1023.33 ± 0.58 A |
GCL | 3283.33 ± 1.53 B | 2936.33 ± 0.58 B | 2881.33 ± 0.58 ns | 1644.33 ± 0.58 ns | 1548.00 ± 1.00 A | 1408.33 ± 0.58 A | 1035.00 ± 0.00 C |
CSCL | 3290.67 ± 0.09 B | 2930.67 ± 1.53 AB | 2881.00 ± 1.00 ns | 1646.00 ± 1.00 ns | 1565.67 ± 1.53 B | 1412.33 ± 0.58 B | 1023.67 ± 0.58 AB |
Assignment | OH | CH | CH | C=O | N–H | C–N | C–O |
Samples | Control | CS | KGCL | MCL | GCL | CSCL |
---|---|---|---|---|---|---|
Day 15 | 0.34 ± 0.08 b | 0.16 ± 0.01 a | 0.12 ± 0.02 a | 0.15 ± 0.08 a | 0.16 ± 0.13 a | 0.12 ± 0.06 a |
Day 30 | 0.83 ± 0.04 b | 0.61 ± 0.12 a | 0.42 ± 0.11 a | 0.60 ± 0.05 a | 0.53 ± 0.10 a | 0.45 ± 0.20 a |
Samples | TVCs (log10 CFU/g) | TYMCs (log10 CFU/g) | ||||
---|---|---|---|---|---|---|
Fresh | Day 15 | Day 30 | Fresh | Day 15 | Day 30 | |
Control | 5.28 ± 0.07 a | 6.57 ± 0.08 c | 8.32 ± 0.03 c | 5.55 ± 0.05 a | 6.79 ± 0.08 c | 8.73 ± 0.05 c |
CS | 5.28 ± 0.07 a | 6.23 ± 0.05 b | 7.97 ± 0.07 b | 5.55 ± 0.05 a | 6.54 ± 0.02 b | 8.28 ± 0.05 b |
KGCL | 5.28 ± 0.07 a | 6.14 ± 0.07 b | 7.80 ± 0.08 b | 5.55 ± 0.05 a | 6.45 ± 0.03 b | 8.14 ± 0.06 b |
MCL | 5.28 ± 0.07 a | 6.23 ± 0.06 b | 7.94 ± 0.01 b | 5.55 ± 0.05 a | 6.54 ± 0.00 b | 8.24 ± 0.03 b |
GCL | 5.28 ± 0.07 a | 6.19 ± 0.10 b | 7.90 ± 0.01 b | 5.55 ± 0.05 a | 6.51 ± 0.04 b | 8.22 ± 0.11 b |
CSCL | 5.28 ± 0.07 a | 5.92 ± 0.03 a | 7.40 ± 0.17 a | 5.55 ± 0.05 a | 6.31 ± 0.05 a | 7.84 ± 0.05 a |
NMR Parameters | Fresh | Day 30 | |||||
---|---|---|---|---|---|---|---|
Control | CS | KGCL | MCL | GCL | CSCL | ||
M21 (%) | 8.45 ± 0.27 a | 9.65 ± 0.12 c | 9.91 ± 0.22 c | 9.07 ± 0.17 b | 9.89 ± 0.14 c | 8.62 ± 0.39 a | 9.08 ± 0.27 b |
M22 (%) | 89.63 ± 0.23 c | 86.49 ± 0.26 a | 86.50 ± 0.15 a | 88.18 ± 0.17 b | 86.78 ± 0.17 a | 88.48 ± 0.19 b | 88.36 ± 0.13 b |
M23 (%) | 1.93 ± 0.22 a | 3.87 ± 0.14 d | 3.59 ± 0.14c d | 2.75 ± 0.26 b | 3.33 ± 0.16 c | 2.90 ± 0.23 b | 2.56 ± 0.33 b |
T21 (ms) | 0.78 ± 0.03 a | 1.35 ± 0.11 b | 1.27 ± 0.18 b | 0.92 ± 0.13 b | 1.24 ± 0.21 c | 0.83 ± 0.07 a | 0.93 ± 0.04 a |
T22 (ms) | 22.25 ± 0.42 a | 28.02 ± 1.14 c | 27.54 ± 0.16 c | 24.39 ± 0.99 b | 27.36 ± 0.06 c | 24.96 ± 0.12 b | 22.75 ± 0.92 a |
T23 (ms) | 191.16 ± 0.00 a | 235.43 ± 0.00 g | 223.74 ± 0.00 f | 204.91 ± 0.00 d | 219.64 ± 0.00 e | 200.66 ± 0.44 c | 195.75 ± 1.93 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Zheng, Y.; Zhou, R.; Ma, M. Characterization of Chitosan Films Incorporated with Different Substances of Konjac Glucomannan, Cassava Starch, Maltodextrin and Gelatin, and Application in Mongolian Cheese Packaging. Coatings 2021, 11, 84. https://doi.org/10.3390/coatings11010084
Ma S, Zheng Y, Zhou R, Ma M. Characterization of Chitosan Films Incorporated with Different Substances of Konjac Glucomannan, Cassava Starch, Maltodextrin and Gelatin, and Application in Mongolian Cheese Packaging. Coatings. 2021; 11(1):84. https://doi.org/10.3390/coatings11010084
Chicago/Turabian StyleMa, Sijun, Yuanrong Zheng, Ran Zhou, and Ming Ma. 2021. "Characterization of Chitosan Films Incorporated with Different Substances of Konjac Glucomannan, Cassava Starch, Maltodextrin and Gelatin, and Application in Mongolian Cheese Packaging" Coatings 11, no. 1: 84. https://doi.org/10.3390/coatings11010084
APA StyleMa, S., Zheng, Y., Zhou, R., & Ma, M. (2021). Characterization of Chitosan Films Incorporated with Different Substances of Konjac Glucomannan, Cassava Starch, Maltodextrin and Gelatin, and Application in Mongolian Cheese Packaging. Coatings, 11(1), 84. https://doi.org/10.3390/coatings11010084