Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring †
Abstract
:1. Introduction
2. Optical Fiber Sensors (OFS)
2.1. Fundamentals
2.2. Applications
3. OFS for Durability Monitoring of Concrete and Reinforced Structures
3.1. OFS for pH Monitoring of Concrete Structures
3.2. OFS for Chloride Ions Detection
3.3. OFS for Moisture Monitoring
3.4. Multifunctional OFS for SHM
4. Future and Research Challenges on OIH Sol-Gel Materials for OFS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-APTS | 3-aminopropyltriethoxysilane |
CTV | Chloride threshold value |
DI | Deionized water |
EtOH | Ethanol |
FBGs | Fiber Bragg Gratings |
HS | Humidity Sensors |
IR | Infrared |
LPG | Long Period Grating |
MetOH | Methanol |
MZI | Mach-Zehnder interferometer |
NDM | Non-destructive methods |
NIR | Near Infrared |
OFS | Optical fiber sensors |
OIH | Organic–inorganic hybrid |
PCB | Printed Circuit Board |
POF | Polymer Optical Fiber |
RCS | Reinforced concrete structures |
RH | Relative Humidity |
RI | Refraction Index |
RIU | Refractive Index Unit |
RT | Response Time |
SHM | Structural health monitoring |
TEOS | Tetraethyl orthosilicate |
UV | Ultraviolet |
WGM | Whispering Gallery Modes |
References
- Jackson, R.G. Novel Sensors and Sensing; Taylor & Francis Limited: Oxfordshire, UK, 2019; ISBN 978-0-367-45431-9. [Google Scholar]
- Tabassum, R.; Kant, R. Recent Trends in Surface Plasmon Resonance Based fiber–optic Gas Sensors Utilizing Metal Oxides and Carbon Nanomaterials as Functional Entities. Sens. Actuators B Chem. 2020, 310, 127813. [Google Scholar] [CrossRef]
- Jiao, L.; Zhong, N.; Zhao, X.; Ma, S.; Fu, X.; Dong, D. Recent Advances in fiber-optic Evanescent Wave Sensors for Monitoring Organic and Inorganic Pollutants in Water. TrAC Trends Anal. Chem. 2020, 127, 115892. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Z.-W.; Xiao, W.; Deng, Q.-X. Review of Fiber Optic Sensors in Geotechnical Health Monitoring. Opt. Fiber Technol. 2020, 54, 102127. [Google Scholar] [CrossRef]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A Review of Railway Infrastructure Monitoring Using Fiber Optic Sensors. Sens. Actuators A Phys. 2019, 303, 111728. [Google Scholar] [CrossRef]
- Liu, X. Evolution of Fiber-Optic Transmission and Networking toward the 5G Era. iScience 2019, 22, 489–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueira, R.B.; Almeida, J.M.; Ferreira, B.; Coelho, L.; Silva, C.J.R. Mater. Adv. in press. 2021. [CrossRef]
- Kaushik, S.; Tiwari, U.K.; Deep, A.; Sinha, R. Two-dimensional Transition Metal Dichalcogenides Assisted Biofunctionalized Optical Fiber SPR Biosensor for Efficient and Rapid Detection of Bovine Serum Albumin. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arnaoutakis, G. Novel Up-Conversion Concentrating Photovoltaic Concepts. Ph.D. Thesis, Heriot-Watt University, Edinburgh, Scotland, 2015. [Google Scholar]
- Yin, S.; Ruffin, P.B.; Yu, F.T.S. Fiber Optic Sensors; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4200-5366-1. [Google Scholar]
- Dislich, H.; Hinz, P. History and Principles of the sol-gel Process, and Some New Multicomponent Oxide Coatings. J. Non Cryst. Solids 1982, 48, 11–16. [Google Scholar] [CrossRef]
- Elsalamawy, M.; Mohamed, A.R.; Kamal, E.M. The Role of Relative Humidity and Cement Type on Carbonation Resistance of Concrete. Alex. Eng. J. 2019, 58, 1257–1264. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Hussain, R.R.; Al-Negheimish, A. Significance of Oxygen Concentration on the Quality of Passive Film Formation for Steel Reinforced Concrete Structures during the Initial Curing of Concrete. Cem. Concr. Compos. 2016, 65, 171–176. [Google Scholar] [CrossRef]
- Song, H.-W.; Kim, H.-J.; Velu, S.; Kim, T.-H. A Micro-Mechanics Based Corrosion Model for Predicting the Service Life of Reinforced Concrete Structures. Int. J. Electrochem. Sci. 2007, 2, 341–354. [Google Scholar]
- Korposh, S.; James, S.W.; Lee, S.-W.; Tatam, R.P. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, R.; James, S.W.; Lee, S.-W.; Morgan, S.P.; Korposh, S. Biomedical Application of Optical Fibre Sensors. J. Opt. 2018, 20, 073003. [Google Scholar] [CrossRef]
- Weng, Y.; Ip, E.; Pan, Z.; Wang, T. Advanced Spatial-Division Multiplexed Measurement Systems Propositions—From Telecommunication to Sensing Applications: A review. Sensors 2016, 16, 1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwis, L.; Sun, T.; Grattan, K. Developments in Optical Fibre Sensors for Industrial Applications. Opt. Laser Technol. 2015, 78, 62–66. [Google Scholar] [CrossRef]
- Gomes, B.; Figueira, R.; Costa, S.; Raposo, M.; Silva, C. Synthesis, Optical and Electrical Characterization of Amino-alcohol Based sol-gel Hybrid Materials. Polymers 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.P.C.L.; Ferreira, B.; Azenha, M.; Costa, S.P.G.; Silva, C.J.R.; Figueira, R. PDMS Based Hybrid sol-gel Materials for Sensing Applications in Alkaline Environments: Synthesis and Characterization. Polymers 2020, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Volkov, P.; Semikov, D.; Goryunov, A.; Luk’yanov, A.; Tertyshnik, A.; Vopilkin, E.; Krayev, S. Miniature fiber-optic Sensor Based on Si Microresonator for Absolute Temperature Measurements. Sens. Actuators A Phys. 2020, 316, 112385. [Google Scholar] [CrossRef]
- Pissadakis, S. Lab-in-a-fiber sensors: A review. Microelectron. Eng. 2019, 217. [Google Scholar] [CrossRef]
- Wang, W.; Liu, T.; Yi, D. Detection of Mercury Ion Based on Quantum Dots Using Miniaturised Optical Fibre Sensor. J. Eng. 2019, 2019, 8595–8598. [Google Scholar] [CrossRef]
- Islam, S.; Bidin, N.; Riaz, S.; Krishnan, G.; Naseem, S. Sol–gel Based Fiber Optic pH Nanosensor: Structural and Sensing Properties. Sens. Actuators A Phys. 2015, 238, 8–18. [Google Scholar] [CrossRef]
- Ricciardi, A.; Consales, M.; Pisco, M.; Cusano, A. Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends. Opt. Fibre Sens. Fundam. Dev. Optim. Devices 2020, 289–329. [Google Scholar] [CrossRef]
- Elosua, C.; Arregui, F.J.; Del Villar, I.; Ruiz-Zamarreño, C.; Corres, J.M.; Bariain, C.; Goicoechea, J.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Micro and Nanostructured Materials for the Development of Optical Fibre Sensors. Sensors 2017, 17, 2312. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Wright, R.; Lu, P.; Cvetic, P.C.; Ohodnicki, P.R. Distributed Fiber Optic pH Sensors Using sol-gel Silica Based Sensitive Materials. Sens. Actuators B Chem. 2021, 340, 129853. [Google Scholar] [CrossRef]
- Figueira, R.B. Hybrid Sol–Gel Coatings for Corrosion Mitigation: A Critical Review. Polymers 2020, 12, 689. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.-S.; Chuang, C.-Y. Optical Fiber Sensor for Dual Sensing of Dissolved Oxygen and Cu2+ Ions Based on PdTFPP/CdSe Embedded in sol–gel Matrix. Sens. Actuators B Chem. 2015, 209, 94–99. [Google Scholar] [CrossRef]
- Ruan, S.; Ebendorff-Heidepriem, H.; Ruan, Y. Optical Fibre turn-on Sensor for the Detection of Mercury Based on Immobilized Fluorophore. Measurement 2018, 121, 122–126. [Google Scholar] [CrossRef]
- Wang, H.; Liu, B.; Ding, Z.; Wang, X. Determination of Water PH Using Absorption-based Optical Sensors: Evaluation of Different Calculation Methods. In Proceedings of the International Conference on Optical and Photonics Engineering (icOPEN 2016), Chengdu, China, 26–30 September 2016; 10250, p. 102502D. [Google Scholar]
- Inserra, B.; Hayashi, K.; Marchisio, A.; Tulliani, J.-M. Sol–gel-entrapped pH Indicator for Monitoring pH Variations in Cementitious Materials. J. Appl. Biomater. Funct. Mater. 2020, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-D.; Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors (2015–2019). Anal. Chem. 2019, 92, 397–430. [Google Scholar] [CrossRef] [PubMed]
- Jerónimo, P.C.; Araújo, A.N.; Montenegro, M. Optical Sensors and Biosensors Based on sol–gel Films. Talanta 2007, 72, 13–27. [Google Scholar] [CrossRef]
- Sousa, R.P.C.L.; Figueira, R.B.; Gomes, B.R.; Costa, S.P.G.; Azenha, M.; Pereira, R.F.P.; Raposo, M.M. Organic–Inorganic Hybrid sol–gel Materials Doped with a Fluorescent Triarylimidazole Derivative. RSC Adv. 2021, 11, 24613–24623. [Google Scholar] [CrossRef]
- Chen, K.; Chou, W.; Liu, L.; Cui, Y.; Xue, P.; Jia, M. Electrochemical Sensors Fabricated by Electrospinning Technology: An Overview. Sensors 2019, 19, 3676. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; Crescitelli, A.; Vaiano, P.; Quero, G.; Consales, M.; Pisco, M.; Esposito, E.; Cusano, A. Lab-on-fiber Technology: A New Vision for Chemical and Biological Sensing. Analyst 2015, 140, 8068–8079. [Google Scholar] [CrossRef]
- Álvarez-Botero, G.; Barón, F.; Cano, C.C.; Sosa, O.; Varon, M. Optical Sensing Using Fiber Bragg Gratings: Fundamentals and Applications. IEEE Instrum. Meas. Mag. 2017, 20, 33–38. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kousiatza, C.; Tzetzis, D.; Karalekas, D. In-situ Characterization of 3D Printed Continuous Fiber Reinforced Composites: A Methodological Study Using Fiber Bragg Grating Sensors. Compos. Sci. Technol. 2019, 174, 134–141. [Google Scholar] [CrossRef]
- Webb, D.J. Fibre Bragg Grating Sensors in Polymer Optical Fibres. Meas. Sci. Technol. 2015, 26, 092004. [Google Scholar] [CrossRef]
- Majumder, M.; Gangopadhyay, T.K.; Chakraborty, A.K.; Dasgupta, K.; Bhattacharya, D. Fibre Bragg Gratings in Structural Health Monitoring—Present Status and Applications. Sens. Actuators A Phys. 2008, 147, 150–164. [Google Scholar] [CrossRef]
- Maaskant, R.; Alavie, T.; Measures, R.; Tadros, G.; Rizkalla, S.; Guha-Thakurta, A. Fiber-optic Bragg Grating Sensors for Bridge Monitoring. Cem. Concr. Compos. 1997, 19, 21–33. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg Grating Sensors for Harsh Environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Li, W.; Ho, S.C.M.; Song, G. Corrosion Detection of Steel Reinforced Concrete Using Combined Carbon Fiber and Fiber Bragg Grating Active Thermal Probe. Smart Mater. Struct. 2016, 25, 045017. [Google Scholar] [CrossRef]
- Antunes, P.; Lima, H.; Alberto, N.; Bilro, L.; Pinto, P.; Costa, A.; Rodrigues, H.; Pinto, J.L.; Nogueira, R.; Varum, H.; et al. Optical Sensors Based on Fiber Bragg Gratings for Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring; Lecture Notes in Electrical Engineering; Mukhopadhyay, S.C., Ed.; Springer: Heidelberg/Berlin, Germany, 2011; pp. 253–295. ISBN 978-3-642-21099-0. [Google Scholar]
- Bremer, K.; Wollweber, M.; Weigand, F.; Rahlves, M.; Kuhne, M.; Helbig, R.; Roth, B. Fibre Optic Sensors for the Structural Health Monitoring of Building Structures. Procedia Technol. 2016, 26, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.P.C.L.; Figueira, R.B.; Costa, S.P.G.; Raposo, M.M.M. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens. 2020, 5, 3678–3709. [Google Scholar] [CrossRef] [PubMed]
- Figueira, R.B. Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef] [Green Version]
- Figueira, R.B.; Silva, C.J.R. Organic-Inorganic Hybrid Sol-Gel Materials for Optical Fiber Sensing Application. Meet. Abstr. 2020, MA2020-02, 3369. [Google Scholar] [CrossRef]
- Barczak, M.; McDonagh, C.; Wencel, D. Micro- and Nanostructured Sol-Gel-Based Materials for Optical Chemical Sensing (2005–2015). Microchim. Acta 2016, 183, 2085–2109. [Google Scholar] [CrossRef]
- Tang, Z.; Gomez, D.; He, C.; Korposh, S.; Morgan, S.P.; Correia, R.; Hayes-Gill, B.; Setchfield, K.; Liu, L. A U-Shape Fibre-Optic pH Sensor Based on Hydrogen Bonding of Ethyl cellulose with a Sol-Gel matrix. J. Lightwave Technol. 2020, 39, 1557–1564. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Wang, Y.; Zhang, T.; Shao, M.; Yu, D.; Fu, H.; Jia, Z. Integrated Optic-Fiber Sensor Based on Enclosed EFPI and Structural Phase-Shift for Discriminating Measurement of Temperature, Pressure and RI. Opt. Laser Technol. 2020, 126, 106112. [Google Scholar] [CrossRef]
- Yang, Y.; Averardi, A.; Gupta, N. An Intensity Modulation Based Fiber-Optic Loop Sensor for High Sensitivity Temperature Measurement. Sens. Actuators A Phys. 2019, 297. [Google Scholar] [CrossRef]
- Kaya, M.; Esentürk, O. Study of Strain Measurement by Fiber Optic Sensors with a Sensitive Fiber Loop Ringdown Spectrometer. Opt. Fiber Technol. 2019, 54, 102070. [Google Scholar] [CrossRef]
- Mahendran, R.; Wang, L.; Machavaram, V.; Pandita, S.; Chen, R.; Kukureka, S.; Fernando, G. Fiber-Optic Sensor Design for Chemical Process and Environmental Monitoring. Opt. Lasers Eng. 2009, 47, 1069–1076. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, H.Y.; Pyeon, C.H.; Kim, S.; Lee, B. Fiber-Optic Humidity Sensor System for the Monitoring and Detection of Coolant Leakage in Nuclear Power Plants. Nucl. Eng. Technol. 2020, 52, 1689–1696. [Google Scholar] [CrossRef]
- Chauhan, M.; Singh, V.K. Fiber Optic pH Sensor Using TiO2-SiO2 Composite Layer with a Temperature Cross-sensitivity Feature. Optik 2020, 212, 164709. [Google Scholar] [CrossRef]
- Sabri, N.; Aljunid, S.A.; Salim, M.S.; Fouad, S. Fiber Optic Sensors: Short Review and Applications. In Recent Trends in Physics of Material Science and Technology; Gaol, F.L., Shrivastava, K., Akhtar, J., Eds.; Springer Series in Materials Science Springer: Singapore, 2015; pp. 299–311. ISBN 978-981-287-128-2. [Google Scholar]
- Wang, X.; Shi, W.; Yun, H.; Grist, S.; Jaeger, N.A.F.; Chrostowski, L. Narrow-band Waveguide Bragg Gratings on SOI Wafers with CMOS-compatible Fabrication Process. Opt. Express 2012, 20, 15547–15558. [Google Scholar] [CrossRef]
- Merzbacher, C.I.; Kersey, A.D.; Friebele, E.J. Fiber Optic Sensors in Concrete Structures: A Review. Smart Mater. Struct. 1996, 5, 196–208. [Google Scholar] [CrossRef]
- Yeo, T.; Sun, T.; Grattan, K. Fibre-Optic Sensor Technologies for Humidity and Moisture Measurement. Sens. Actuators A Phys. 2008, 144, 280–295. [Google Scholar] [CrossRef]
- Grahn, W.; Makedonski, P.; Wichern, J.; Kowalsky, W.; Wiese, S. Fiber Optic Sensors for an In-Situ Monitoring of Moisture and PH Value in Reinforced Concrete. In Proceedings of the Imaging Spectrometry VII; International Society for Optics and Photonics: Washington, DC, USA, 2002; Volume 4480, pp. 395–404. [Google Scholar]
- Górriz, B.T.; Payá-Zaforteza, I.; García, P.C.; Maicas, S.S. New Fiber Optic Sensor for Monitoring Temperatures in Concrete Structures during Fires. Sens. Actuators A Phys. 2017, 254, 116–125. [Google Scholar] [CrossRef]
- Zolkapli, M.; Saharudin, S.; Herman, S.H.; Abdullah, W.F.H. Quasi-distributed Sol-Gel Coated Fiber Optic Oxygen Sensing Probe. Opt. Fiber Technol. 2018, 41, 109–117. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Pathak, A.K.; Singh, V.K. No-core Fiber-based Highly Sensitive Optical Fiber pH Sensor. J. Biomed. Opt. 2017, 22, 057001. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.K.; Singh, V.K. Fabrication and Characterization of Down-tapered Optical Fiber pH Sensor Using Sol-Gel Method. Optik 2017, 149, 288–294. [Google Scholar] [CrossRef]
- Liu, D.; Han, W.; Mallik, A.K.; Yuan, J.; Yu, C.; Farrell, G.; Semenova, Y.; Wu, Q. High Sensitivity Sol-Gel Silica Coated Optical Fiber Sensor for Detection of Ammonia in Water. Opt. Express 2016, 24, 24179. [Google Scholar] [CrossRef] [Green Version]
- Kant, R.; Tabassum, R.; Gupta, B.D. Integrating Nanohybrid Membranes of Reduced Graphene Oxide: Chitosan: Silica Sol Gel with Fiber Optic SPR for Caffeine Detection. Nanotechnology 2017, 28, 195502. [Google Scholar] [CrossRef] [PubMed]
- Villalba, S.; Casas, J. Application of Optical Fiber Distributed Sensing to Health Monitoring of Concrete Structures. Mech. Syst. Signal Process. 2012, 39, 441–451. [Google Scholar] [CrossRef]
- Bado, M.; Casas, J. A review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S. A Review on Five Key Sensors for Monitoring of Concrete Structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Wu, T.; Liu, G.; Fu, S.; Xing, F. Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of civil Infrastructure. Sensors 2020, 20, 4517. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.P.; Chan, H.-L.; Beard, S.J.; Ooi, T.K.; Marotta, S.A. Effect of Adhesive on the Performance of Piezoelectric Elements used to Monitor Structural Health. Int. J. Adhes. Adhes. 2006, 26, 622–628. [Google Scholar] [CrossRef]
- Liu, W.; Giurgiutiu, V. Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-filed Elements. Proc. SPIE 2007, 6529, 65293. [Google Scholar] [CrossRef]
- Li, X.; Cui, H.; Zhang, B.; Yuan, C. Experimental Study of a Structural Health Monitoring Method Based on Piezoelectric Element Array. In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 3–5 October 2017; pp. 27–31. [Google Scholar]
- Nie, M.; Xia, Y.-H.; Yang, H.-S. A Flexible and Highly Sensitive Graphene-Based Strain Sensor for Structural Health Monitoring. Clust. Comput. 2018, 22, 8217–8224. [Google Scholar] [CrossRef]
- Li, X.D.; Li, S.L.; Zhong, S.L.; Ge, S. Comparison Analysis of Fiber Bragg Brating and Resistance Strain Gauge Used in Quayside Container Crane Structural Health Monitoring. Appl. Mech. Mater. 2013, 330, 485–493. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Wan, K.T.; Inaudi, D.; Bao, X.; Habel, W.; Zhou, Z.; Ou, J.; Ghandehari, M.; Wu, H.C.; Imai, M. Review: Optical Fiber Sensors for Civil Engineering Applications. Mater. Struct. 2013, 48, 871–906. [Google Scholar] [CrossRef] [Green Version]
- Rajeev, P.; Kodikara, J.; Chiu, W.K.; Kuen, T. Distributed Optical Fibre Sensors and Their Applications in Pipeline Monitoring. Key Eng. Mater. 2013, 558, 424–434. [Google Scholar] [CrossRef]
- Takeda, S.-I.; Aoki, Y.; Nagao, Y. Damage Monitoring of CFRP Stiffened Panels Under Compressive Load Using FBG Sensors. Compos. Struct. 2012, 94, 813–819. [Google Scholar] [CrossRef]
- Tan, C.; Shee, Y.G.; Yap, B.; Adikan, F.M. Fiber Bragg Grating Based Sensing System: Early Corrosion Detection for Structural Health Monitoring. Sens. Actuators A Phys. 2016, 246, 123–128. [Google Scholar] [CrossRef]
- Yehia, S.; Landolsi, T.; Hassan, M.; Hallal, M. Monitoring of Strain Induced by Heat of Hydration, Cyclic and Dynamic Loads in Concrete Structures Using Fiber-Optics Sensors. Measurement 2014, 52, 33–46. [Google Scholar] [CrossRef]
- Royon, M.; Jamon, D.; Blanchet, T.; Royer, F.; Vocanson, F.; Marin, E.; Morana, A.; Boukenter, A.; Ouerdane, Y.; Jourlin, Y.; et al. Sol–Gel Waveguide-Based Sensor for Structural Health Monitoring on Large Surfaces in Aerospace Domain. Aerospace 2021, 8, 109. [Google Scholar] [CrossRef]
- Silva, R.N.F.; Tsuruta, K.M.; Rabelo, D.S.; Neto, R.M.F.; Cavalini, A.A.; Steffen, V. Impedance-Based Structural Health Monitoring Applied to Steel Fiber-Reinforced Concrete Structures. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–15. [Google Scholar] [CrossRef]
- Sakiyama, F.I.H.; Lehmann, F.; Garrecht, H. Structural Health Monitoring of Concrete Structures Using Fibre-Optic-Based Sensors: A Review. Mag. Concr. Res. 2021, 73, 174–194. [Google Scholar] [CrossRef]
- Rossi, P.; Le Maou, F. New Method for Detecting Cracks in Concrete Using Fibre Optics. Mater. Struct. 1989, 22, 437–442. [Google Scholar] [CrossRef]
- Bao, T.; Wang, J.; Yao, Y. A Fiber Optic Sensor for Detecting and Monitoring Cracks in Concrete Structures. Sci. China Ser. E Technol. Sci. 2010, 53, 3045–3050. [Google Scholar] [CrossRef]
- Deng, L.; Cai, C. Applications of Fiber Optic Sensors in Civil Engineering. Struct. Eng. Mech. 2007, 25, 577–596. [Google Scholar] [CrossRef] [Green Version]
- Gerlach, G.; Guenther, M.; Suchaneck, G.; Sorber, J.; Arndt, K.-F.; Richter, A. Application of Sensitive Hydrogels in Chemical and pH Sensors. Macromol. Symp. 2004, 210, 403–410. [Google Scholar] [CrossRef]
- Manjakkal, L.; Cvejin, K.; Kulawik, J.; Zaraska, K.; Szwagierczak, D.; Stojanovic, G. Sensing Mechanism of RuO2–SnO2 Thick Film pH Sensors Studied by Potentiometric Method and Electrochemical Impedance Spectroscopy. J. Electroanal. Chem. 2015, 759, 82–90. [Google Scholar] [CrossRef]
- Ke, X. Micro-fabricated Electrochemical Chloride Ion Sensors: From the Present to the Future. Talanta 2020, 211, 120734. [Google Scholar] [CrossRef] [PubMed]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical pH Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2019, 109, 100635. [Google Scholar] [CrossRef]
- Huang, W.-D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J. A Flexible pH Sensor Based on the Iridium Oxide Sensing Film. Sens. Actuators A Phys. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Grant, S.A.; Bettencourt, K.; Krulevitch, P.; Hamilton, J.; Glass, R. In Vitro and in Vivo Measurements of Fiber Optic and Electrochemical Sensors to Monitor Brain Tissue pH. Sens. Actuators B Chem. 2001, 72, 174–179. [Google Scholar] [CrossRef]
- O’Hare, D.; Parker, K.H.; Winlove, C.P. Metal–Metal Oxide pH Sensors for Physiological Application. Med. Eng. Phys. 2006, 28, 982–988. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Nambiar, S.; Yeow, J.T.; Howlader, M.M.; Hu, N.-X.; Deen, J. Polymers and Organic Materials-based pH Sensors for Healthcare Applications. Prog. Mater. Sci. 2018, 96, 174–216. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Rao, S.; Yang, X.; Dubey, S.; Mays, J.; Cao, H.; Chiao, J.-C. Sol-gel Deposition of Iridium Oxide for Biomedical Micro-devices. Sensors 2015, 15, 4212–4228. [Google Scholar] [CrossRef] [Green Version]
- Vasylevska, A.S.; Karasyov, A.A.; Borisov, S.; Krause, C. Novel Coumarin-based Fluorescent pH Indicators, Probes and Membranes Covering a Broad pH Range. Anal. Bioanal. Chem. 2007, 387, 2131–2141. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S. Fiber-Optic Chemical Sensors and Biosensors. Anal. Chem. 2008, 80, 4269–4283. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Yang, S. Fabrication method and characterization of electrodeposited and heat-treated iridium oxide films for pH sensing. Sens. Actuators B Chem. 2014, 196, 31–38. [Google Scholar] [CrossRef]
- Mihell, J.; Atkinson, J. Planar Thick-film pH Electrodes Based on Ruthenium Dioxide Hydrate. Sens. Actuators B Chem. 1998, 48, 505–511. [Google Scholar] [CrossRef]
- Ryynänen, T.; Nurminen, K.; Hämäläinen, J.; Leskela, M.; Lekkala, J. pH Electrode Based on ALD Deposited Iridium Oxide. Procedia Eng. 2010, 5, 548–551. [Google Scholar] [CrossRef] [Green Version]
- Manjakkal, L.; Cvejin, K.; Kulawik, J.; Zaraska, K.; Szwagierczak, D.; Socha, R.P. Fabrication of Thick Film Sensitive RuO2-TiO2 and Ag/AgCl/KCl Reference Electrodes and Their Application for pH Measurements. Sens. Actuators B Chem. 2014, 204, 57–67. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J. A Ruthenium Oxide and Iridium Oxide Coated Titanium Electrode for pH Measurement. RSC Adv. 2020, 10, 25952–25957. [Google Scholar] [CrossRef]
- Da Silva, G.; Lemos, S.; Pocrifka, L.; Marreto, P.; Rosario, A.; Pereira, E. Development of Low-cost Metal Oxide pH Electrodes Based on the Polymeric Precursor Method. Anal. Chim. Acta 2008, 616, 36–41. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, J.; Pan, D.; Wei, H.; Wang, C.; Pan, F.; Xia, J.; Ma, S. pH Electrodes Based on Iridium Oxide Films for Marine Monitoring. Trends Environ. Anal. Chem. 2020, 25, e00083. [Google Scholar] [CrossRef]
- El-Giar, E.E.-D.M.; Wipf, D. Microparticle-based Iridium Oxide Ultramicroelectrodes for pH Sensing and Imaging. J. Electroanal. Chem. 2007, 609, 147–154. [Google Scholar] [CrossRef]
- Sardarinejad, A.; Maurya, D.K.; Alameh, K. The pH Sensing Properties of RF Sputtered RuO2 Thin-film Prepared Using Different Ar/O2 Flow Ratio. Materials 2015, 8, 3352–3363. [Google Scholar] [CrossRef]
- Shylendra, S.P.; Lonsdale, W.; Wajrak, M.; Nur-E-Alam, M.; Alameh, K. Titanium Nitride Thin Film Based Low-Redox-Interference Potentiometric pH Sensing Electrodes. Sensors 2020, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Deibert, B.J.; Li, J. A Distinct Reversible Colorimetric and Fluorescent Low pH Response on a Water-Stable Zirconium–Porphyrin Metal–Organic Framework. Chem. Commun. 2014, 50, 9636–9639. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-R.; Ren, Q.-Q.; Yuan, X.-J.; Wen, W.; Chen, W.; Zhan, D.-P. Iridium Oxide Based Coaxial pH Ultramicroelectrode. Electrochem. Commun. 2014, 40, 35–37. [Google Scholar] [CrossRef]
- Koncki, R.; Mascini, M. Screen-Printed Ruthenium Dioxide Electrodes for pH Measurements. Anal. Chim. Acta 1997, 351, 143–149. [Google Scholar] [CrossRef]
- Bause, S.; Decker, M.; Gerlach, F.; Nather, J.; Köster, F.; Neubauer, P.; Vonau, W. Development of an Iridium-based pH Sensor for Bioanalytical Applications. J. Solid State Electrochem. 2017, 22, 51–60. [Google Scholar] [CrossRef]
- Zimer, A.M.; Lemos, S.; Pocrifka, L.; Mascaro, L.; Pereira, E. Needle-like IrO/Ag Combined pH Microelectrode. Electrochem. Commun. 2010, 12, 1703–1705. [Google Scholar] [CrossRef]
- Sardarinejad, A.; Maurya, D.; Alameh, K. The Effects of Sensing Electrode Thickness on Ruthenium Oxide Thin-Film pH Sensor. Sens. Actuators A Phys. 2014, 214, 15–19. [Google Scholar] [CrossRef]
- Ferreira, R.C.M.; Costa, S.P.G.; Gonçalves, H.; Belsley, M.; Raposo, M.M.M. Fluorescent Phenanthroimidazoles Functionalized with Heterocyclic Spacers: Synthesis, optical chemosensory ability and two-photon absorption (TPA) properties. New J. Chem. 2017, 41, 12866–12878. [Google Scholar] [CrossRef]
- Esteves, C.I.; Ferreira, R.M.; Raposo, M.M.; Costa, S.P. New Fluoroionophores for Metal Cations Based on Benzo[ d ]oxazol-5-yl-alanine Bearing Pyrrole and Imidazole. Dye. Pigment. 2018, 151, 211–218. [Google Scholar] [CrossRef]
- Debus, H. Ueber Die Einwirkung Des Ammoniaks Auf Glyoxal. Eur. J. Org. Chem. 1858, 107, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Sundberg, R.J.; Martin, R.B. Interactions of Histidine and Other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological Systems. Chem. Rev. 1974, 74, 471–517. [Google Scholar] [CrossRef]
- Graßmann, S.; Apelt, J.; Sippl, W.; Ligneau, X.; Pertz, H.H.; Zhao, Y.H.; Arrang, J.-M.; Ganellin, C.; Schwartz, J.-C.; Schunack, W.; et al. Imidazole Derivatives as a Novel Class of Hybrid Compounds with Inhibitory Histamine N-methyltransferase Potencies and Histamine hH3 Receptor Affinities. Bioorg. Med. Chem. 2003, 11, 2163–2174. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Kharb, R.; Kumar, S.; Chander Sharma, P.; Pal Pathak, D. Imidazole Derivatives as Potential Therapeutic Agents. Curr. Pharm. Des. 2016, 22, 3265–3301. [Google Scholar] [CrossRef]
- Molina, P.; Tárraga, A.; Otón, F. Imidazole Derivatives: A Comprehensive Survey of Their Recognition Properties. Org. Biomol. Chem. 2011, 10, 1711–1724. [Google Scholar] [CrossRef]
- Lv, H.; Zhao, X.; Zhan, Y.; Gong, P. Damage Evaluation of Concrete Based on Brillouin Corrosion Expansion Sensor. Constr. Build. Mater. 2017, 143, 387–394. [Google Scholar] [CrossRef]
- Abbas, Y.; ten Have, B.; Hoekstra, G.I.; Douma, A.; de Bruijn, D.; Olthuis, W.; van den Berg, A. Connecting to Concrete: Wireless Monitoring of Chloride Ions in Concrete Structures. Procedia Eng. 2015, 120, 965–968. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F. Fiber Optic Health Monitoring of Civil Structures Using Long Gage and Acoustic Sensors. Smart Mater. Struct. 2005, 14, S1–S7. [Google Scholar] [CrossRef]
- Dong, S.-G.; Lin, C.-J.; Hu, R.-G.; Li, L.-Q.; Du, R.-G. Effective Monitoring of Corrosion in Reinforcing Steel in Concrete Constructions by a Multifunctional Sensor. Electrochim. Acta 2010, 56, 1881–1888. [Google Scholar] [CrossRef]
- Bartelmess, J.; Zimmek, D.; Bartholmai, M.; Strangfeld, C.; Schäferling, M. Fibre Optic Ratiometric Fluorescence pH Sensor for Monitoring Corrosion in Concrete. Analyst 2020, 145, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Tariq, A.; Baydoun, J.; Remy, C.; Ghasemi, R.; Lefevre, J.P.; Mongin, C.; Dauzères, A.; Leray, I. Fluorescent Molecular Probe Based Optical Fiber Sensor Dedicated to pH Measurement of Concrete. Sens. Actuators B Chem. 2020, 327, 128906. [Google Scholar] [CrossRef]
- Hall, S.K.; Stableforth, D.E.; Green, A. Sweat Sodium and Chloride Concentrations—Essential Criteria for the Diagnosis of Cystic Fibrosis in Adults. Ann. Clin. Biochem. Int. J. Lab. Med. 1990, 27, 318–320. [Google Scholar] [CrossRef] [Green Version]
- Gonzalo-Ruiz, J.; Mas, R.; de Haro, C.; Cabruja, E.; Camero, R.; Alonso-Lomillo, M.A.; Muñoz, F.J. Early Determination of Cystic Fibrosis by Electrochemical Chloride Quantification in Sweat. Biosens. Bioelectron. 2009, 24, 1788–1791. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.; Parrilla, M.; Crespo, G.A. Wearable Potentiometric Sensors for Medical Applications. Sensors 2019, 19, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laxmeshwar, L.S.; Jadhav, M.S.; Akki, J.F.; Raikar, P.; Kumar, J.; Prakash, O.; Mahakud, R.; Raikar, U.; Laxmeshwara, L.S. Quantification of Chloride and Iron in Sugar Factory Effluent Using Long Period Fiber Grating Chemical Sensor. Sens. Actuators B Chem. 2018, 258, 850–856. [Google Scholar] [CrossRef]
- Asche, K.; Fontenot, S.; Lee, S. City of Morris—Chloride Discharge Assessment; Center for Small Towns: Morris, MN, USA, 2013; Volume 66, Available online: https://digitalcommons.morris.umn.edu/cst/66.
- Bujes-Garrido, J.; Arcos-Martñnez, M.J. Disposable Sensor for Electrochemical Determination of Chloride Ions. Talanta 2016, 155, 153–157. [Google Scholar] [CrossRef]
- Guo, Y.; Compton, R.G. A Bespoke Reagent free Amperometric Chloride Sensor for Drinking Water. Analyst 2021, 146, 4700–4707. [Google Scholar] [CrossRef]
- Atkins, C.; Carter, M.; Scantlebury, J. Sources of Error in Using Silver/Silver Chloride Electrodes to Monitor Chloride Activity in Concrete. Cem. Concr. Res. 2001, 31, 1207–1211. [Google Scholar] [CrossRef]
- Gandña-Romero, J.M.; Bataller, R.; Monzón, P.; Campos, I.; García-Breijo, E.; Valcuende, M.; Soto, J. Characterization of Embeddable Potentiometric Thick-Film Sensors for Monitoring Chloride Penetration in Concrete. Sens. Actuators B Chem. 2016, 222, 407–418. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, P.; Zhao, K.; Du, Z.; Zhao, T. Application of Ag/AgCl Sensor for Chloride Monitoring of Mortar Under Dry-Wet Cycles. Sensors 2020, 20, 1394. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Y.; Pargar, F.; Koleva, D.A.; van Breugel, K.; Olthuis, W.; Berg, A.V.D. Non-Destructive Measurement of Chloride Ions Concentration in Concrete—A Comparative Analysis of Limitations and Prospects. Constr. Build. Mater. 2018, 174, 376–387. [Google Scholar] [CrossRef] [Green Version]
- Melo, L.; Rodrigues, J.; Farinha, A.; Marques, C.; Bilro, L.; Alberto, N.; Tomé, J.; Nogueira, R. Concentration Sensor Based on a Tilted Fiber Bragg Grating for Anions Monitoring. Opt. Fiber Technol. 2014, 20, 422–427. [Google Scholar] [CrossRef]
- Tang, J.-L.; Wang, J.-N. Measurement of Chloride-Ion Concentration With Long-Period Grating Technology. Smart Mater. Struct. 2007, 16, 665–672. [Google Scholar] [CrossRef]
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete—Degradation Phenomena Involving Detrimental Chemical Reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- Andrade, C.; Keddam, M.; Nóvoa, X.; Pérez, M.C.; Rangel, C.M.; Takenouti, H. Electrochemical Behaviour of Steel Rebars in Concrete: Influence of Environmental Factors and Cement Chemistry. Electrochim. Acta 2001, 46, 3905–3912. [Google Scholar] [CrossRef]
- Muthulingam, S.; Rao, B.N. Chloride Binding and Time-Dependent Surface Chloride Content Models for Fly Ash Concrete. Front. Struct. Civ. Eng. 2015, 10, 112–120. [Google Scholar] [CrossRef]
- Cady, P.; Weyers, R. Predicting Service Life of Concrete Bridge Decks Subject to Reinforcement Corrosion. ASTM Int. 2009, 328. [Google Scholar] [CrossRef]
- Darmawan, M.S. Pitting Corrosion Model for Reinforced Concrete Structures in a Chloride Environment. Mag. Concr. Res. 2010, 62, 91–101. [Google Scholar] [CrossRef]
- Li, D.; Wei, R.; Li, L.; Guan, X.; Mi, X. Pitting Corrosion of Reinforcing Steel Bars in Chloride Contaminated Concrete. Constr. Build. Mater. 2018, 199, 359–368. [Google Scholar] [CrossRef]
- Ann, K.Y.; Song, H.-W. Chloride Threshold Level for Corrosion of Steel in Concrete. Corros. Sci. 2007, 49, 4113–4133. [Google Scholar] [CrossRef]
- Basheer, L.; Kropp, J.; Cleland, D.J. Assessment of the Durability of Concrete From its Permeation Properties: A Review. Constr. Build. Mater. 2001, 15, 93–103. [Google Scholar] [CrossRef]
- Kwon, S.-J.; Lee, H.-S.; Karthick, S.; Saraswathy, V.; Yang, H.-M. Long-term Corrosion Performance of Blended Cement Concrete in the Marine Environment—A Real-time Study. Constr. Build. Mater. 2017, 154, 349–360. [Google Scholar] [CrossRef]
- Figueira, R.M.B.B.M.; Fontinha, I.R.; Silva, C.J.R.; Pereira, E.V. Hybrid Sol-gel Coatings: Smart and Green Materials for Corrosion Mitigation. Coatings 2016, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Jin, W.; Liu, R. Reinforcement Corrosion-induced Cover Cracking and its Time Prediction for Reinforced Concrete Structures. Corros. Sci. 2011, 53, 1337–1347. [Google Scholar] [CrossRef]
- Feliu, S.; González, J.; Miranda, J.M.; Feliu, V. Possibilities and Problems of in Situ Techniques for Measuring Steel Corrosion Rates in Large Reinforced Concrete Structures. Corros. Sci. 2005, 47, 217–238. [Google Scholar] [CrossRef]
- Song, H.-W.; Lee, C.-H.; Ann, K.Y. Factors Influencing Chloride Transport in Concrete Structures Exposed to Marine Environments. Cem. Concr. Compos. 2008, 30, 113–121. [Google Scholar] [CrossRef]
- Hong, K.; Hooton, R.D. Effects of Cyclic Chloride Exposure on Penetration of Concrete Cover. Cem. Concr. Res. 1999, 29, 1379–1386. [Google Scholar] [CrossRef]
- Shi, X.; Xie, N.; Fortune, K.; Gong, J. Durability of Steel Reinforced Concrete in Chloride Environments: An Overview. Constr. Build. Mater. 2012, 30, 125–138. [Google Scholar] [CrossRef]
- Hansson, C.M. The Impact of Corrosion on Society. Met. Mater. Trans. A 2011, 42, 2952–2962. [Google Scholar] [CrossRef]
- Dodds, W.; Christodoulou, C.; Goodier, C.; Austin, S.; Dunne, D. Durability Performance of Sustainable Structural Concrete: Effect of Coarse Crushed Concrete Aggregate on Rapid Chloride Migration and Accelerated Corrosion. Constr. Build. Mater. 2017, 155, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Berrocal, C.G.; Löfgren, I.; Lundgren, K. Correlation Between Concrete Cracks and Corrosion Characteristics of Steel Reinforcement in Pre-cracked Plain and Fibre-Reinforced Concrete Beams. Mater. Struct. 2020, 53, 1–22. [Google Scholar] [CrossRef]
- Yu, H.; Chiang, K.-T.K.; Yang, L. Threshold Chloride Level and Characteristics of Reinforcement Corrosion Initiation in Simulated Concrete Pore Solutions. Constr. Build. Mater. 2012, 26, 723–729. [Google Scholar] [CrossRef]
- Luo, D.; Ma, J.; Ibrahim, Z.; Ismail, Z. Etched FBG Coated with Polyimide for Simultaneous Detection the Salinity and Temperature. Opt. Commun. 2017, 392, 218–222. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.; Ding, Q.; Shen, X.; Yuan, Y.; Huang, J. Microstructured Optical Fiber Based Chloride Ion Sensing Method for Concrete Health Monitoring. Sens. Actuators B Chem. 2018, 260, 763–769. [Google Scholar] [CrossRef]
- Dhouib, M.; Conciatori, D.; Sorelli, L. Optical Fiber Chloride Sensor for Health Monitoring of Structures in Cold Regions. In Cold Regions Engineering; Reston, V.A., Ed.; American Society of Civil Engineers: Reston, VI, USA, 2019; pp. 391–397. [Google Scholar] [CrossRef]
- Xiao, W.; Ding, L.; He, J.; Huang, J. Preparation of Lucigenin-Doped Silica Nanoparticles and Their Application in Fiber Optic Chloride Ion Sensor. Opt. Mater. 2019, 98, 109467. [Google Scholar] [CrossRef]
- Tang, F.; Li, Z.; Li, C.; Chen, Y.; Li, H.-N. Monitoring Passivation, Pitting Corrosion Initiation, and Propagation of Steel Bar with Iron–Carbon Electroplated Long Period Fiber-Grating Sensor. J. Mater. Civ. Eng. 2020, 32, 04020373. [Google Scholar] [CrossRef]
- Valero, L.R.; Sasso, V.F.; Vicioso, E.P. In Situ Assessment of Superficial Moisture Condition in Façades of Historic Building Using Non-Destructive Techniques. Case Stud. Constr. Mater. 2019, 10, e00228. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z.; Ross, D.; Dignan, J.; Fan, Y.; Huang, Y.; Wang, G.; Bagtzoglou, A.C.; Lei, Y.; Li, B. Towards Water-Saving Irrigation Methodology: Field Test of Soil Moisture Profiling Using Flat Thin mm-sized Soil Moisture Sensors (MSMSs). Sens. Actuators B Chem. 2019, 298, 126857. [Google Scholar] [CrossRef]
- Zheng, L.R.; Tenhunen, H.; Zou, Z. Intelligent Packaging: Humidity Sensing System. In Smart Electronic Systems; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2018; pp. 205–220. ISBN 978-3-527-69168-5. [Google Scholar]
- Dean, T.; Bell, J.; Baty, A. Soil Moisture Measurement by an Improved Capacitance Technique, Part I. Sensor Design and Performance. J. Hydrol. 1987, 93, 67–78. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency, Electrical Conduc-tivity and Temperature Analysis of a Low-Cost Capacitance Soil Moisture Sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
- Voss, A.; Pour-Ghaz, M.; Vauhkonen, M.; Seppänen, A. Electrical Capacitance Tomography to Monitor Unsaturated Moisture Ingress In Cement-Based Materials. Cem. Concr. Res. 2016, 89, 158–167. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, J.H.; Park, S.-Y.; Kang, J.-H.; Kim, S.-J.; Choi, Y.-B.; Shin, U.S. Carbon Nanotubes Immobilized on Gold Electrode As an Electrochemical Humidity Sensor. Sens. Actuators B Chem. 2019, 300, 127049. [Google Scholar] [CrossRef]
- Qi, R.; Lin, X.; Dai, J.; Zhao, H.; Liu, S.; Fei, T.; Zhang, T. Humidity Sensors Based on MCM-41/Polypyrrole Hybrid Film Via In-Situ Polymerization. Sens. Actuators B Chem. 2018, 277, 584–590. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K. Optical Fibre-Based Sensor Technology for Humidity and Moisture Measurement: Review of Recent Progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Paroll, H.; Nykänen, E. Measurement of Relative Humidity and Temperature in a New Concrete Bridge vs Laboratory Samples. In Proceedings of the Nordic Concrete Research; Norsk Betongforening: Oslo, Norway, 1999; Volume 23, pp. 116–118. [Google Scholar]
- Shoukry, S.N.; William, G.W.; Downie, B.; Riad, M.Y. Effect of Moisture and Temperature on the Mechanical Properties of Concrete. Constr. Build. Mater. 2011, 25, 688–696. [Google Scholar] [CrossRef]
- Kim, J.-K.; Lee, C.-S. Moisture Diffusion of Concrete Considering Self-Desiccation at Early Ages. Cem. Concr. Res. 1999, 29, 1921–1927. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete: Fourth and Final Edition; Wiley: Hoboken, NJ, USA, 1996; ISBN 978-0-470-23527-0. [Google Scholar]
- Straube, J. Moisture in Buildings. ASHRAE J. 2002, 44, 15–19. [Google Scholar]
- Nemec, T.; Rant, J.; Apih, V.; Kaling, M. Monitoring of Moisture Transport in Building Materials by Neutron Radiography. In Proceedings of the 7th European Conference on Non-Destructive Testing, Copenhagen, Denmark, 26–29 May 1998; pp. 822–828, ISBN 978-87-986898-0-5. [Google Scholar]
- Norris, A.; Saafi, M.; Romine, P. Temperature and Moisture Monitoring in Concrete Structures Using Embedded Nanotechnology/Microelectromechanical Systems (MEMS) Sensors. Constr. Build. Mater. 2008, 22, 111–120. [Google Scholar] [CrossRef]
- Dong, Y.; Luke, A.; Vitillo, N.; Ansari, F. In-place Estimation of Concrete Strength During the Construction of a Highway Bridge By the Maturity Method. Concr. Int. 2002, 24, 61–66. [Google Scholar]
- Harith, Z.; Batumalay, M.; Irawati, N.; Harun, S.; Arof, H.; Ahmad, H. Relative Humidity Sensor Employing Tapered Plastic Optical Fiber Coated with Seeded Al-doped ZnO. Optik 2017, 144, 257–262. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lee, G.-B. Humidity Sensors: A Review. Sens. Lett. 2005, 3, 1–15. [Google Scholar] [CrossRef]
- Cao, D.; Fang, H.; Wang, F.; Zhu, H.; Sun, M. A Fiber Bragg-Grating-Based Miniature Sensor for the Fast Detection of Soil Moisture Profiles in Highway Slopes and Subgrades. Sensors 2018, 18, 4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, K.; Liu, J.; Sun, N.; Zhong, W. Soil Moisture Sensor Design Based on Fiber Bragg Grating. In Proceedings of the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, Kunming, China, 8–10 August 2018; 2019; p. 75. [Google Scholar]
- Islam, R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Xu, D.; Xu, W.; Wang, Y.; Yan, C.; Zhang, C.; Yan, D.; He, Y.; Tang, L.; Zhang, W.; et al. Humidity Sensor Based on Fabry–Perot Interferometer and Intracavity Sensing of Fiber Laser. J. Lightwave Technol. 2017, 35, 4789–4795. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Gunawardena, D.S.; Liu, Z.; Tam, H.-Y. Microstructured Optical Fiber Based Fabry–Pérot Interferometer As a Humidity Sensor Utilizing Chitosan Polymeric Matrix for Breath Monitoring. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Johari, A.M.; Khudus, M.I.M.A.; Bin Jali, M.H.; Al Noman, A.; Harun, S.W. Whispering Gallery Modes on Optical Micro-Bottle Resonator for Humidity Sensor Application. Optik 2019, 185, 558–565. [Google Scholar] [CrossRef]
- Liang, L.; Li, M.; Liu, N.; Sun, H.; Rong, Q.; Hu, M. A High-Sensitivity Optical Fiber Relative Humidity Sensor Based on Microsphere WGM Resonator. Opt. Fiber Technol. 2018, 45, 415–418. [Google Scholar] [CrossRef]
- Manju, P.; Hardman, K.S.; Wigley, P.B.; Close, J.D.; Robins, N.P.; Szigeti, S.S. An Atomic Fabry–Perot Interferometer Using a Pulsed Interacting Bose–Einstein Condensate. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lux, O.; Sarang, S.; Kitzler, O.; Spence, D.J.; Mildren, R.P. Intrinsically Stable High-Power Single Longitudinal Mode Laser Using Spatial Hole Burning Free Gain. Optica 2016, 3, 876–881. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Shyu, L.-H.; Chang, C.-P. The Comparison of Environmental Effects on Michelson and Fabry-Perot Interferometers Utilized for the Displacement Measurement. Sensors 2010, 10, 2577–2586. [Google Scholar] [CrossRef] [Green Version]
- Foreman, M.; Swaim, J.D.; Vollmer, F. Whispering Gallery Mode Sensors. Adv. Opt. Photon. 2015, 7, 168–240. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.L.; Eckstein, D.; McKinley, B.; Boswell, L.F.; Sun, T.; Grattan, K.T.V. Demonstration of a Fibre-Optic Sensing Technique for the Measurement of Moisture Absorption in Concrete. Smart Mater. Struct. 2006, 15, N40–N45. [Google Scholar] [CrossRef]
- Yuan, D.; Dong, Y.; Liu, Y.; Li, T. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib WaveGuide with Large Cross Section. Sensors 2015, 15, 21500–21517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zisis, G.; Ying, C.Y.J.; Soergel, E.; Mailis, S. Ferroelectric Domain Building Blocks for Photonic and Nonlinear Optical Microstructures in LiNbO. J. Appl. Phys. 2014, 115, 124102. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, X.; Li, T.; Chan, C.C.; Shum, P.P. Simultaneous Measurement of Relative Humidity and Temperature with PCF-MZI Cascaded by Fiber Bragg Grating. Opt. Commun. 2013, 303, 42–45. [Google Scholar] [CrossRef]
- Yeo, T.; Sun, T.; Grattan, K.; Parry, D.; Lade, R.; Powell, B. Polymer-Coated Fiber Bragg Grating for Relative Humidity Sensing. IEEE Sens. J. 2005, 5, 1082–1089. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Polarization-Dependent Humidity Sensor Based on an In-Fiber Mach-Zehnder Interferometer Coated with Graphene Oxide. Sens. Actuators B Chem. 2016, 234, 503–509. [Google Scholar] [CrossRef]
- Bian, C.; Cheng, Y.; Zhu, W.; Tong, R.; Hu, M.; Gang, T. A Novel Optical Fiber Mach–Zehnder Interferometer Based on the Calcium Alginate Hydrogel Film for Humidity Sensing. IEEE Sens. J. 2020, 20, 5759–5765. [Google Scholar] [CrossRef]
- Blank, T.; Eksperiandova, L.; Belikov, K. Recent Trends of Ceramic Humidity Sensors Development: A Review. Sens. Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Amani, N. Characterizing the Pulse Velocity and Electrical Resistivity Changes in Concrete with Piezoresisitive Smart Cement Binder Using Vipulanandan Models. Constr. Build. Mater. 2018, 175, 519–530. [Google Scholar] [CrossRef]
- Sophocleous, M.; Savva, P.; Petrou, M.F.; Atkinson, J.K.; Georgiou, J. A Durable Screen-Printed Sensor for In Situ and Real-time Monitoring of Concrete’s Electrical Resistivity Suitable for Smart Buildings/Cities and IoT. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Badr, J.; Fargier, Y.; Palma-Lopes, S.; Deby, F.; Balayssac, J.-P.; Delepine-Lesoille, S.; Cottineau, L.-M.; Villain, G. Design and Validation of a Multi-Electrode Embedded Sensor to Monitor Resistivity Profiles over Depth in Concrete. Constr. Build. Mater. 2019, 223, 310–321. [Google Scholar] [CrossRef]
- Bourreau, L.; Bouteiller, V.; Schoefs, F.; Gaillet, L.; Thauvin, B.; Schneider, J.; Naar, S. Uncertainty Assessment of Concrete Electrical Resistivity Measurements on a Coastal Bridge. Struct. Infrastruct. Eng. 2019, 15, 443–453. [Google Scholar] [CrossRef]
- Correia, S.F.H.; Antunes, P.; Pecoraro, E.; Lima, P.P.; Varum, H.; Carlos, L.D.; Ferreira, R.A.S.; André, P.S. Optical Fiber Relative Humidity Sensor Based on a Fbg with a Di-ureasil Coating. Sensors 2012, 12, 8847–8860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liehr, S.; Breithaupt, M.; Krebber, K. Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths. Sensors 2017, 17, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, J.; Liu, Q.; Liu, J.; Zhang, D. Optical Fiber Sensors Based on Novel Polyimide for Humidity Monitoring of Building Materials. Opt. Fiber Technol. 2017, 41, 40–47. [Google Scholar] [CrossRef]
- Moerman, W.; Taerwe, L.; Waele, W.D.; Degrieck, J.; Baets, R. Application of Optical Fibre Sensors for Monitoring Civil Engineering Structures. Struct. Concr. 2015, 2, 63–71. [Google Scholar] [CrossRef]
- Silva, K.; Silva, F.; Mahfoud, T.; Khelidj, A.; Brientin, A.; Azevedo, A.; Delgado, J.; de Lima, A. On the Use of Embedded Fiber Optic Sensors for Measuring Early-Age Strains in Concrete. Sensors 2021, 21, 4171. [Google Scholar] [CrossRef]
- Fuhr, P.L.; Huston, D.R. Corrosion Detection in Reinforced Concrete Roadways and Bridges via Embedded Fiber Optic Sensors. Smart Mater. Struct. 1998, 7, 217–228. [Google Scholar] [CrossRef]
- Domaneschi, M.; Cimellaro, G.; Ansari, F.; Morgese, M.; Inaudi, D. Embedded Fiber-Optic Sensors in Reinforced Concrete Elements of Bridge Structures. In Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations; CRC Press: Boca Raton, FL, USA, 2021; pp. 1657–1664. [Google Scholar] [CrossRef]
- Figueira, R.B.; Silva, C.J.R.; Pereira, E.V.; Salta, M.M. Alcohol-Aminosilicate Hybrid Coatings for Corrosion Protection of Galvanized Steel in Mortar. J. Electrochem. Soc. 2014, 161, C349–C362. [Google Scholar] [CrossRef]
- Torres-Luque, M.; Bastidas-Arteaga, E.; Schoefs, F.; Sánchez-Silva, M.; Osma, J.F. Non-Destructive Methods for Measuring Chloride Ingress Into Concrete: State-of-the-art and Future Challenges. Constr. Build. Mater. 2014, 68, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Navarro, I.J.; Yepes, V.; Martí, J.V. Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability 2018, 10, 845. [Google Scholar] [CrossRef] [Green Version]
- Kruschwitz, B. Optical Fiber Sensors for the Quantitative Measurement of Strain in Concrete Structures. In Proceedings of the First European Conference on Smart Structures and Materials; International Society for Optics and Photonics: Washington, DC, USA, 1992; Volume 1777, p. 17771E. [Google Scholar]
- Lau, K.T.; Chan, C.C.; Zhou, L.-M.; Jin, W. Strain Monitoring in Composite-Strengthened Concrete Structures Using Optical Fibre Sensors. Compos. Part B Eng. 2001, 32, 33–45. [Google Scholar] [CrossRef]
- Estella, J.; de Vicente, P.; Echeverría, J.C.; Garrido, J.J. A Fibre-Optic Humidity Sensor Based on a Porous Silica Xerogel Film as the Sensing Element. Sens. Actuators B Chem. 2010, 149, 122–128. [Google Scholar] [CrossRef]
- Wang, Y.; Tjin, C.S.; Sun, X.; Lim, T.-K.; Moyo, P.; Brownjohn, J.M.W. Simultaneous Monitoring of Strain and Temperature in Concrete Structures with Embedded Fiber Bragg Gratings. In Proceedings of the Second International Conference on Experimental Mechanics; International Society for Optics and Photonics: Washington, DC, USA, 2001; Volume 4317, pp. 540–545. [Google Scholar]
- Wong, A.C.; Childs, P.A.; Berndt, R.; Macken, T.; Peng, G.-D.; Gowripalan, N. Simultaneous Measurement of Shrinkage and Temperature of Reactive Powder Concrete at Early-Age Using Fibre Bragg Grating Sensors. Cem. Concr. Compos. 2007, 29, 490–497. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.F.; Tam, H.-Y.; Tao, X. Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. Photonics 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Cusano, A.; Breglio, G.; Giordano, M.; Nicolais, L.; Cutolo, A. Multifunction Fiber Optic Sensing System for Smart Applications. IEEE/ASME Trans. Mechatron. 2004, 9, 40–49. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Wan, K.T.; Chen, L. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures. Sensors 2008, 8, 1960–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Femenias, Y.S.; Angst, U.; Moro, F.; Elsener, B. Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration. Sensors 2018, 18, 3101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angst, U.M.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Chloride Induced Reinforcement Corrosion: Electrochemical Monitoring of Initiation Stage and Chloride Threshold Values. Corros. Sci. 2011, 53, 1451. [Google Scholar] [CrossRef]
- Grattan, K.T.; Ning, Y.N. Optoelectronics, Imaging and Sensing. In Optical Fiber Sensor Technology: Applications and Systems; Grattan, L.S., Meggitt, B.T., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 978-0-412-82570-5. [Google Scholar]
Type of Sensor | Precursors/Reagents | Detection Range | Sensitivity | RT | Year | Ref. |
---|---|---|---|---|---|---|
Colorimetric | TEOS, cresol red, chlorophenol red and bromophenol blue | 2–13 | 1.02 nm/pH −0.93 nm/pH | NR | 2017 | [66] |
Ratiometric | D4 hydrogel, EtOH, Thymol blue, CdSe and ZnCdSe /ZnS QDs and toluene | >12.5 | NR | 2 days | 2020 | [128] |
Fluorimetric | Naphth-AlkyneOMe, PVA, DMSO, Poly(vinyl alcohol) and H2O | 10.25–13.5 | NR | 100 s | 2021 | [129] |
TEOS, SiO2, EtOH, HCl, HAuCl4 and Au-SiO2 | 8–12.5 | 10.08 % T/pH 19.90 % T/pH 13.40 % T/pH | 3 min 16 s 19 s | 2021 | [27] |
Type of Sensor | Transducer | Detection Limit | Concentration Range | Sensitivity | Year | Ref. |
---|---|---|---|---|---|---|
FBG | NR | NR | NR | 15.407 nm/RIU 125.92 nm/RIU | 2017 | [162] |
Fluorescence | Lucigenin | 0.02 M | NR | NR | 2018 | [163] |
Fluorescence | Chloride-sensitive fluorophore immobilized in a calcium alginate sol-gel | NR | 0.045 M–0.45 M | NR | 2019 | [164] |
Fluorescence | Lucigenin | NR | 0.02 M–0.06 M | NR | 2019 | [165] |
LPG | NR | NR | NR | 9.8 μg/cm2 | 2020 | [166] |
Type of Sensor | Precursors/Reagents | Detection Limit | Detection Range | RT | Year | Ref. |
---|---|---|---|---|---|---|
Vipulanandan models | NR | NR | 17.00 Ω·m 25.26 Ω·m 61.24 Ω·m | 15–75 min 15–75 min 30–60 min | 2018 | [205] |
Screen-graphed sensor | NR | 0.82 Ω·m 0.61 Ω·m | 0.82–9.80 Ω·m 0.38–9.80 Ω·m | 5–7 days | 2018 | [206] |
PCB | Copper tracks, glass-reinforced epoxy laminate | NR | 5.8–484.6 Ω·m 5.7–448.3 Ω·m | NR | 2019 | [207] |
Four electrodes arrangement probe (Wenner type) | NR | NR | 10–160 KΩ·cm | NR | 2019 | [208] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, B.R.; Araújo, R.; Sousa, T.; Figueira, R.B. Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring. Coatings 2021, 11, 1245. https://doi.org/10.3390/coatings11101245
Gomes BR, Araújo R, Sousa T, Figueira RB. Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring. Coatings. 2021; 11(10):1245. https://doi.org/10.3390/coatings11101245
Chicago/Turabian StyleGomes, Bárbara R., Rui Araújo, Tatiana Sousa, and Rita B. Figueira. 2021. "Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring" Coatings 11, no. 10: 1245. https://doi.org/10.3390/coatings11101245
APA StyleGomes, B. R., Araújo, R., Sousa, T., & Figueira, R. B. (2021). Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring. Coatings, 11(10), 1245. https://doi.org/10.3390/coatings11101245