Vapour Phase Deposition of Thin Siloxane Coatings on the Iron Surface. The Impact of the Layer Structure and Oxygen Adsorption on Corrosion Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vapour Phase Deposition of Thin Siloxane Layers on the Iron Surface
2.2. Piezo-Quartz Microbalance
2.3. Scanning Kelvin Probe
3. Experimental Results
3.1. QCM Application for Monitoring of Siloxane Films Adsorption on the Iron Surface
3.2. Surface Analyses of Thin Siloxane Films by Auger and XPS Spectroscopies
3.3. Application of SKP to Study of Metal-Siloxane Interface
3.4. Water Adsorption and Corrosion of Siloxane Modified Iron Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leidheiser, H.; Granata, R.D. Ion transport through protective polymeric coatings exposed to an aqueous phase. IBM J. Res. Dev. 1988, 32, 582–590. [Google Scholar] [CrossRef]
- Thomas, N.L. The barrier properties of paint coatings. Prog. Org. Coat. 1991, 19, 101–121. [Google Scholar] [CrossRef]
- Kinsella, E.M.; Mayne, J.E.O. Ionic conduction in polymer films I. influence of electrolyte on resistance. Br. Polym. J. 1969, 1, 173–176. [Google Scholar] [CrossRef]
- Mayne, J.E.O.; Scantlebury, J.D. Ionic conduction in polymer films II. inhomogeneous structure of varnish films. Br. Polym. J. 1970, 2, 240–243. [Google Scholar] [CrossRef]
- Kendig, M.; Mills, D.J. A historical perspective on the corrosion protection by paints. Prog. Org. Coat. 2017, 102, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Mills, D.J.; Jamali, S.S. The best tests for anti-corrosive paints. And why: A personal viewpoint. Prog. Org. Coat. 2017, 102, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.M. Role of acid-base interfacial bonding in adhesion. J. Adhes. Sci. Technol. 1987, 1, 7–27. [Google Scholar] [CrossRef]
- Negele, O.; Funke, W. Internal stress and wet adhesion of organic coatings. Prog. Org. Coat. 1996, 28, 285–289. [Google Scholar] [CrossRef]
- Roche, A.A.; Bouchet, J.; Bentadjine, S. Formation of epoxy-diamine/metal interphases. Int. J. Adhes. Adhes. 2002, 22, 431–441. [Google Scholar] [CrossRef]
- Aufray, M.; Roche, A.A. Is gold always chemically passive? Study and comparison of the epoxy-amine/metals interphases. Appl. Surf. Sci. 2008, 254, 1936–1941. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, A.; Thierry, D.; Volovitch, P.; Ogle, K. An SKP and EIS investigation of amine adsorption on zinc oxide surfaces. Surf. Interface Anal. 2010, 43, 1286–1298. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Silane Coupling Agents; Plenum: New York, NY, USA, 1982. [Google Scholar]
- Wang, D.; Bierwagen, G.P. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Figueira, R.B.; Fontinha, I.R.; Silva, C.J.R.; Pereira, E.V. Review hybrid sol-gel coatings: Smart and green materials for corrosion mitigation. Coatings 2016, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- De Graeve, I.; Vereecken, J.; Franquet, A.; Van Schaftinghen, T.; Terryn, H. Silane coating of metal substrates: Complimentary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Prog. Org. Coat. 2007, 59, 224–229. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Sanz, J.; Bastidas, J.M. Steel protection using sol-gel coatings in simulated concrete pore solution contaminated with chloride. Surf. Coat. Technol. 2014, 258, 485–494. [Google Scholar] [CrossRef]
- Petrunin, M.A.; Nazarov, A.P.; Mikhailovskii, Y.N. Formation mechanism and anticorrosive properties of thin siloxane films on metal surfaces. J. Electrochem. Soc. 1996, 143, 251–257. [Google Scholar] [CrossRef]
- Mohseni, M.; Mirabedini, M.; Hashemi, M.; Thompson, G.E. Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-silane primers. Progr. Org. Coat. 2006, 57, 307–313. [Google Scholar] [CrossRef]
- Mathiesen, E.; Nazarov, A.P.; Stratmann, M. In situ investigation of the adsorption of alkyltrimethoxysilanes on iron surfaces. Fresenius J. Anal. Chem. 1993, 346, 294–296. [Google Scholar] [CrossRef]
- Nazarov, A.P.; Stratmann, M. Synthesis and properties of thin siloxane films on an iron surface. Russ. J. Phys. Chem. 1994, 68, 1007–1014. [Google Scholar]
- Nazarov, A.P.; Stratmann, M. Adsorption of methoxysilanes on an iron surface and behaviour of formed surfaces in a corrosive environments. Prot. Met. 1994, 30, 52–58. [Google Scholar]
- Nazarov, A.P.; Traverso, P.; Beccaria, A.M.; Thierry, D. Trimetoxysilane adsorption on iron surfaces; a scanning vibrating capacitor and electrochemical impedance study. Prot. Met. 1999, 35, 453–478. [Google Scholar]
- Petrunin, M.A.; Nazarov, A.P.; Mikhaylovskii, Y.N. Adsorption and interphase interactions in metal—Silane and metal–silane–polymer systems. Prot. Met. 1993, 29, 225–231. [Google Scholar]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Für Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Petrunin, M.A.; Gladkikh, N.A.; Maleeva, M.A.; Yurasova, T.A.; Terekhova, E.V.; Maksaeva, L.B. Application of the quartz crystal microbalance technique in corrosion studies: A review. Int. J. Corros. Scale Inhib. 2020, 9, 92–117. [Google Scholar]
- Hölzl, J.; Schulte, F.K. Solid Surface Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979; p. 2. [Google Scholar]
- Samec, Z.; Johnson, B.W.; Capadonia, M.; Jauch, M.; Doblhofer, K. Kelvin probe measurements for chemical analysis: Interfacial structures. Sens. Actuators B 1993, 14, 741–744. [Google Scholar] [CrossRef]
- Cappadonia, M.; Doblhofer, K. The electrical state of NAFION coated electrodes emersed from liquid electrolytes. Electrochim. Acta 1989, 34, 1815–1818. [Google Scholar] [CrossRef]
- Yee, S.; Stratmann, M.; Oriani, R. Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres. J. Electrochem. Soc. 1991, 138, 55–67. [Google Scholar] [CrossRef]
- Nazarov, A.; Thierry, D. Application of Scanning Kelvin Probe in the study of protective paints. Front. Mater. 2019, 6, 192. [Google Scholar] [CrossRef] [Green Version]
- Memming, R. Semiconductor Electrochemistry; Willey, VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Taylor, D.M. Advances Developments in the theoretical modelling and experimental measurement of the surface potential of condensed monolayers. Colloid Interface Sci. 2000, 87, 183–203. [Google Scholar] [CrossRef]
- Daves, J.T.; Rideal, E.K. Interfacial Phenomena; Academic: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Watts, J.F.; Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES; Wiley & Sons: Chichester, UK, 2003. [Google Scholar]
- Davis, S.J.; Watts, J.F. Organization of methoxysilane molecules on iron. Int. J. Adhes. Adhes. 1996, 16, 5–15. [Google Scholar] [CrossRef]
- Muniefa, W.-M.; Heibc, F.; Hempela, F.; Lua, X.; Schwartz, M.; Pachauria, V.; Hempelmannc, R.; Schmitt, M.; Ingebrandta, S. Silane deposition via gas-phase evaporation and high-resolution surface characterization of the ultra-thin siloxane coatings. Langmuir 2018, 34, 10217–10229. [Google Scholar] [CrossRef]
- Boerio, F.J.; Dillingham, R.G. Adhesive Joints: Formation, Characterization and Testing; Mittal, K.L., Ed.; Plenum: New York, NY, USA, 1984; p. 541. [Google Scholar]
- Nazarov, A.P.; Thierry, D. Scanning Kelvin probe study of metal/polymer interfaces. Electrochim. Acta 2004, 49, 2955–2964. [Google Scholar] [CrossRef]
- Salgin, B.; Özkanat, Ö.; Mol, J.M.C.; Terryn, H.; Rohwerder, M. Role of surface oxide properties on the aluminum/epoxy interfacial bonding. J. Phys. Chem. C. 2013, 117, 4480–4487. [Google Scholar] [CrossRef]
- Wielant, J.; Posner, R.; Hausbrand, R.; Grundmeier, G.; Terryn, H. SKP as a tool to study the physicochemical interaction at buried metal coating interfaces. Surf. Interface Anal. 2010, 42, 1005–10009. [Google Scholar] [CrossRef]
- Nazarov, A.P.; Traverso, P.; Beccaria, A.M.; Thierry, D. Surface and Corrosion Chemistry of Iron with Grafted Silane Coupling Agents. In Proceedings of the EUROCORR’99, Aachen, Germany, 30 August–2 September 1999. [Google Scholar]
- Nazarov, A.; Romano, A.-P.; Fedel, M.; Deflorian, F.; Thierry, D.; Olivier, M.-G. Filiform corrosion of electrocoated aluminium alloy: Role of the pre-treatment. Corros. Sci. 2012, 65, 187–198. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarov, A.; Petrunin, M.; Maksaeva, L.; Yurasova, T.; Traverso, P.; Marshakov, A. Vapour Phase Deposition of Thin Siloxane Coatings on the Iron Surface. The Impact of the Layer Structure and Oxygen Adsorption on Corrosion Stability. Coatings 2021, 11, 1217. https://doi.org/10.3390/coatings11101217
Nazarov A, Petrunin M, Maksaeva L, Yurasova T, Traverso P, Marshakov A. Vapour Phase Deposition of Thin Siloxane Coatings on the Iron Surface. The Impact of the Layer Structure and Oxygen Adsorption on Corrosion Stability. Coatings. 2021; 11(10):1217. https://doi.org/10.3390/coatings11101217
Chicago/Turabian StyleNazarov, Andrei, Maxim Petrunin, Liudmila Maksaeva, Tatyana Yurasova, Pierluigi Traverso, and Andrey Marshakov. 2021. "Vapour Phase Deposition of Thin Siloxane Coatings on the Iron Surface. The Impact of the Layer Structure and Oxygen Adsorption on Corrosion Stability" Coatings 11, no. 10: 1217. https://doi.org/10.3390/coatings11101217
APA StyleNazarov, A., Petrunin, M., Maksaeva, L., Yurasova, T., Traverso, P., & Marshakov, A. (2021). Vapour Phase Deposition of Thin Siloxane Coatings on the Iron Surface. The Impact of the Layer Structure and Oxygen Adsorption on Corrosion Stability. Coatings, 11(10), 1217. https://doi.org/10.3390/coatings11101217