Modeling of Surfactant-Enhanced Drying of Poly(styrene)-p-xylene Polymeric Coatings Using Machine Learning Technique
Abstract
:1. Introduction
- Set 1: Coating of 2021 μm initial coating thickness having poly(styrene), p-xylene, and TPP, 4.95%, 95.05%, and 0%, respectively.
- Set 2: Coating of 2011 μm initial coating thickness having poly(styrene), p-xylene, and TPP, 5.02%, 94.46%, and 0.52%, respectively.
- Set 3: Coating of 1999 μm initial coating thickness having poly(styrene), p-xylene, and TPP, 5.03%, 93.95%, and 1.02%, respectively.
- Set 4: Coating of 2005 μm initial coating thickness having poly(styrene), p-xylene, and TPP, 5.02%, 93.47%, and 1.51%, respectively.
- Set 5: Coating of 2009 μm initial coating thickness having poly(styrene), p-xylene, and TPP, 4.99%, 93.01%, and 2.00%, respectively.
2. Modeling Based on Machine Learning Technique: Regression Tree Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Average of predicted values for leaf C | |
C | Any one of the leafs for the tree |
J | Numerical response |
MSE | Mean squared error |
N | Number of data points/number of observations/number of samples |
R | Matrix |
SSE | Sum of squared errors |
TPP | triphenyl phosphate |
x | Input data (N×M matrix) |
y | corresponding output data (N×1 matrix) |
Yfit1 | Model predicted values for the unseen inputs (not used in training) |
Data set | |
Number of inputs/number of predictors |
References
- Fahlman, M.; Salaneck, W.R. Surfaces and interfaces in polymer-based electronics. Surf. Sci. 2002, 500, 904–922. [Google Scholar] [CrossRef]
- Ikada, Y. Surface modification of polymers for medical applications. Biomaterials 1994, 15, 725–736. [Google Scholar] [CrossRef]
- Arya, R.K.; Thapliyal, D.; Sharma, J.; Verros, G.D. Glassy polymers—Diffusion, sorption, ageing and applications. Coatings 2021, 11, 1049. [Google Scholar] [CrossRef]
- Kajiya, T.; Kobayashi, W.; Okuzono, T.; Doi, M. Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. J. Phys. Chem. B 2009, 113, 15460–15466. [Google Scholar] [CrossRef]
- Martín-Fabiani, I.; Lesage de la Haye, J.; Schulz, M.; Liu, Y.; Lee, M.; Duffy, B.; D’Agosto, F.; Lansalot, M.; Keddie, J.L. Enhanced water barrier properties of surfactant-free polymer films obtained by macroraft-mediated emulsion polymerization. ACS Appl. Mater. Interfaces 2018, 10, 11221–11232. [Google Scholar] [CrossRef]
- Jiang, B.; Tsavalas, J.; Sundberg, D. Water whitening of polymer films: Mechanistic studies and comparisons between water and solvent borne films. Progress Org. Coat. 2017, 105, 56–66. [Google Scholar] [CrossRef]
- Ortona, O.; D’Errico, G.; Paduano, L.; Sartorio, R. Ionic surfactant–polymer interaction in aqueous solution. Phys. Chem. Chem. Phys. 2002, 4, 2604–2611. [Google Scholar] [CrossRef]
- Debeaufort, F.; Voilley, A. Effect of surfactants and drying rate on barrier properties of emulsified edible films. Int. J. Food Sci. Technol. 1995, 30, 183–190. [Google Scholar] [CrossRef]
- Hoff, E.; Nyström, B.; Lindman, B. Polymer−surfactant interactions in dilute mixtures of a nonionic cellulose derivative and an anionic surfactant. Langmuir 2001, 17, 28–34. [Google Scholar] [CrossRef]
- Angus-Smyth, A.; Bain, C.D.; Varga, I.; Campbell, R.A. Effects of bulk aggregation on pei–sds monolayers at the dynamic air–liquid interface: Depletion due to precipitation versus enrichment by a convection/spreading mechanism. Soft Matter 2013, 9, 6103–6117. [Google Scholar] [CrossRef]
- Nizri, G.; Lagerge, S.; Kamyshny, A.; Major, D.T.; Magdassi, S. Polymer–surfactant interactions: Binding mechanism of sodium dodecyl sulfate to poly(diallyldimethylammonium chloride). J. Colloid Interface Sci. 2008, 320, 74–81. [Google Scholar] [CrossRef]
- Hai, M.; Han, B. Study of interaction between sodium dodecyl sulfate and polyacrylamide by rheological and conductivity measurements. J. Chem. Eng. Data 2006, 51, 1498–1501. [Google Scholar] [CrossRef]
- Petrovic, L.B.; Sovilj, V.J.; Katona, J.M.; Milanovic, J.L. Influence of polymer–surfactant interactions on o/w emulsion properties and microcapsule formation. J. Colloid Interface Sci. 2010, 342, 333–339. [Google Scholar] [CrossRef]
- Talwar, S.; Scanu, L.; Raghavan, S.R.; Khan, S.A. Influence of binary surfactant mixtures on the rheology of associative polymer solutions. Langmuir 2008, 24, 7797–7802. [Google Scholar] [CrossRef]
- Shirakbari, N.; Ebrahimi, M.; Mobarakeh, H.; Khorasani, M. Effect of surfactant type and concentration on surfactant migration, surface tension, and adhesion of latex films. J. Macromol. Sci. 2014, 53, 1286–1292. [Google Scholar] [CrossRef]
- Müller, M.; Scharfer, P.; Kind, M.; Schabel, W. Influence of non-volatile additives on the diffusion of solvents in polymeric coatings. Chem. Eng. Process. Process Intensif. 2011, 50, 551–554. [Google Scholar] [CrossRef]
- Anthony, O.; Zana, R. Interactions between water-soluble polymers and surfactants: Effect of the polymer hydrophobicity. 1. Hydrophilic polyelectrolytes. Langmuir 1996, 12, 1967–1975. [Google Scholar] [CrossRef]
- Balazs, A.C.; Hu, J.Y. Effects of surfactant concentration on polymer-surfactant interactions in dilute solutions: A computer model. Langmuir 1989, 5, 1230–1234. [Google Scholar] [CrossRef]
- Gu, Z.; Alexandridis, P. Drying of films formed by ordered poly(ethylene oxide)−poly(propylene oxide) block copolymer gels. Langmuir 2005, 21, 1806–1817. [Google Scholar] [CrossRef]
- Meconi, G.M.; Ballard, N.; Asua, J.M.; Zangi, R. Adsorption and desorption behavior of ionic and nonionic surfactants on polymer surfaces. Soft Matter 2016, 12, 9692–9704. [Google Scholar] [CrossRef]
- Okazaki, M.; Shioda, K.; Masuda, K.; Toei, R. Drying mechanism of coated film of polymer solution. J. Chem. Eng. Jpn. 1974, 7, 99–105. [Google Scholar] [CrossRef]
- Ravichandran, S.; Kumari, C.R.T. Effect of anionic surfactant on the thermo acoustical properties of sodium dodecyl sulphate in polyvinyl alcohol solution by ultrasonic method. E J. Chem. 2011, 8, 741971. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Huber, G.; Hoffmann, H. Surfactant aggregation in the presence of polymers. Langmuir 1987, 3, 382–387. [Google Scholar] [CrossRef]
- Yamamura, M.; Mawatari, H.Y.Y.; Kage, H. Enhanced solvent drying in surfactant polymer blend coating. In Proceeding of the e 14th International Coating Science and Technology Symposium, Marina del Rey, CA, USA, 7–10 September 2008; pp. 114–117. [Google Scholar]
- Müller, M.; Kind, M.; Cairncross, R.; Schabel, W. Diffusion in multi-component polymeric systems: Diffusion of non-volatile species in thin films. Eur. Phys. J. Spec. Top. 2009, 166, 103–106. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, J.; Arya, R.K.; Ahuja, S.; Agnihotri, S. Surfactant enhanced drying of water based poly(vinyl alcohol) coatings. Progress Org. Coat. 2018, 125, 443–452. [Google Scholar] [CrossRef]
- Sharma, I.; Sharma, J.; Ahuja, S.; Kumar Arya, R. Optimization of sodium dodecyl sulphate loading in poly(vinyl alcohol)-water coatings. Progress Org. Coat. 2019, 127, 401–407. [Google Scholar] [CrossRef]
- Arya, R.K.; Kaur, H.; Rawat, M.; Sharma, J.; Chandra, A.; Ahuja, S. Influence of plasticizer (triphenyl phosphate) loading on drying of binary coatings: Poly(styrene)-p-xylene coatings. Progress Org. Coat. 2021, 150, 106001. [Google Scholar] [CrossRef]
- Jhamb, S.; Enekvist, M.; Liang, X.; Zhang, X.; Dam-Johansen, K.; Kontogeorgis, G.M. A review of computer-aided design of paints and coatings. Curr. Opin. Chem. Eng. 2020, 27, 107–120. [Google Scholar] [CrossRef]
- Paturi, U.M.R.; Cheruku, S.; Geereddy, S.R. Process modeling and parameter optimization of surface coatings using artificial neural networks (anns): State-of-the-art review. Mater. Today Proc. 2021, 38, 2764–2774. [Google Scholar] [CrossRef]
- Yılmaz, İ.; Arslan, E.; Kızıltaş, E.Ç.; Çavdar, K. Development of a prediction method of rayleigh damping coefficients for free layer damping coatings through machine learning algorithms. Int. J. Mech. Sci. 2020, 166, 105237. [Google Scholar] [CrossRef]
- Honrao, S.J.; Yang, X.; Radhakrishnan, B.; Kuwata, S.; Komatsu, H.; Ohma, A.; Sierhuis, M.; Lawson, J.W. Discovery of novel li sse and anode coatings using interpretable machine learning and high-throughput multi-property screening. Sci. Rep. 2021, 11, 16484. [Google Scholar] [CrossRef]
- Liu, Y.; Ravichandran, R.; Chen, K.; Patnaik, P. Application of machine learning to solid particle erosion of aps-tbc and eb-pvd tbc at elevated temperatures. Coatings 2021, 11, 845. [Google Scholar] [CrossRef]
- Siang, T.W.; Firdaus Akbar, M.; Nihad Jawad, G.; Yee, T.S.; Mohd Sazali, M.I. A past, present, and prospective review on microwave nondestructive evaluation of composite coatings. Coatings 2021, 11, 913. [Google Scholar] [CrossRef]
- Marian, M.; Tremmel, S. Current trends and applications of machine learning in tribology—A review. Lubricants 2021, 9, 86. [Google Scholar] [CrossRef]
- Tang, W.; Li, Y.; Yu, Y.; Wang, Z.; Xu, T.; Chen, J.; Lin, J.; Li, X. Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms. Chemosphere 2020, 253, 126666. [Google Scholar] [CrossRef]
- Tušek, A.J. Application of multivariate regression and artificial neural network modelling for prediction of physical and chemical properties of medicinal plants aqueous extracts. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100229. [Google Scholar] [CrossRef]
- Jalal, M.; Arabali, P.; Grasley, Z.; Bullard, J.W.; Jalal, H. Behavior assessment, regression analysis and support vector machine (svm) modeling of waste tire rubberized concrete. J. Clean. Prod. 2020, 273, 122960. [Google Scholar] [CrossRef]
- Abrougui, K.; Karim, G.; Mercatoris, B.; Khemis, C.; Roua, A.; Chehaibi, S. Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ann) and multiple linear regressions (mlr). Soil Tillage Res. 2019, 190, 202–208. [Google Scholar] [CrossRef]
- Akbari, E.; Moradi, R.; Afroozeh, A.; Alizadeh, A.; Nilashi, M. A new approach for prediction of graphene based isfet using regression tree and neural network. Superlattices Microstruct. 2019, 130, 241–248. [Google Scholar] [CrossRef]
- De Stefano, C.; Lando, G.; Malegori, C.; Oliveri, P.; Sammartano, S. Prediction of water solubility and setschenow coefficients by tree-based regression strategies. J. Mol. Liq. 2019, 282, 401–406. [Google Scholar] [CrossRef]
- Zegler, C.H.; Renz, M.J.; Brink, G.E.; Ruark, M.D. Assessing the importance of plant, soil, and management factors affecting potential milk production on organic pastures using regression tree analysis. Agric. Syst. 2020, 180, 102776. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees, 1st ed.; Routledge: Boca Raton, FL, USA, 1984; pp. 237–251. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
Time, s | Experimental Weight of the Coating, g [28] | Model Predicted Weight of Coating, g | % Absolute Error |
---|---|---|---|
460 | 0.28964 | 0.28821 | 0.4944 |
465 | 0.28951 | 0.28821 | 0.4497 |
470 | 0.28938 | 0.28821 | 0.4050 |
475 | 0.28925 | 0.28821 | 0.3603 |
515 | 0.28819 | 0.28821 | 0.0062 |
520 | 0.28806 | 0.28821 | 0.0514 |
525 | 0.28793 | 0.28821 | 0.0965 |
530 | 0.2878 | 0.28821 | 0.1417 |
885 | 0.27895 | 0.28000 | 0.3779 |
890 | 0.27883 | 0.28000 | 0.4211 |
895 | 0.27871 | 0.28000 | 0.4644 |
900 | 0.27859 | 0.28000 | 0.5076 |
1665 | 0.26092 | 0.25835 | 0.9834 |
1670 | 0.26081 | 0.25835 | 0.9417 |
1675 | 0.2607 | 0.25835 | 0.8999 |
1680 | 0.26058 | 0.25835 | 0.8542 |
1805 | 0.25775 | 0.25835 | 0.2344 |
1810 | 0.25764 | 0.25835 | 0.2772 |
1815 | 0.25753 | 0.25835 | 0.3200 |
1820 | 0.25741 | 0.25835 | 0.3668 |
2451 | 0.24335 | 0.24473 | 0.5682 |
2456 | 0.24324 | 0.24473 | 0.6137 |
2461 | 0.24313 | 0.24473 | 0.6592 |
2466 | 0.24302 | 0.24473 | 0.7048 |
2471 | 0.24291 | 0.24473 | 0.7504 |
Time, s | Experimental Weight of the Coating, g [28] | Model Predicted Weight of Coating, g | % Absolute Error |
---|---|---|---|
30 | 0.29862 | 0.29865 | 0.0096 |
35 | 0.29855 | 0.29865 | 0.0330 |
40 | 0.29847 | 0.29865 | 0.0599 |
45 | 0.2984 | 0.29865 | 0.0833 |
800 | 0.28184 | 0.28000 | 0.6514 |
805 | 0.28173 | 0.28000 | 0.6126 |
810 | 0.28162 | 0.28000 | 0.5737 |
815 | 0.28152 | 0.28000 | 0.5384 |
1526 | 0.26616 | 0.26768 | 0.5703 |
1531 | 0.26604 | 0.26768 | 0.6156 |
1536 | 0.26591 | 0.26768 | 0.6648 |
1541 | 0.26579 | 0.26768 | 0.7103 |
3371 | 0.22324 | 0.22327 | 0.0122 |
3376 | 0.22313 | 0.22327 | 0.0615 |
3381 | 0.22302 | 0.22327 | 0.1108 |
3386 | 0.22291 | 0.22327 | 0.1602 |
5792 | 0.17156 | 0.16992 | 0.9579 |
5797 | 0.17146 | 0.16992 | 0.9001 |
5802 | 0.17136 | 0.16992 | 0.8423 |
5807 | 0.17126 | 0.16992 | 0.7844 |
15,765 | 0.02383 | 0.02401 | 0.7727 |
15,770 | 0.02383 | 0.02401 | 0.7727 |
15,775 | 0.02382 | 0.02401 | 0.8150 |
15,780 | 0.02382 | 0.02401 | 0.8150 |
15,785 | 0.02382 | 0.02401 | 0.8150 |
Time, s | Experimental Weight of the Coating, g [28] | Model Predicted Weight of Coating, g | % Absolute Error |
---|---|---|---|
140 | 0.29497 | 0.29664 | 0.5666 |
145 | 0.29486 | 0.29664 | 0.6041 |
150 | 0.29475 | 0.29664 | 0.6416 |
155 | 0.29463 | 0.29664 | 0.6826 |
160 | 0.29451 | 0.29664 | 0.7237 |
165 | 0.29439 | 0.29664 | 0.7647 |
4947 | 0.17258 | 0.17446 | 1.0913 |
4952 | 0.17247 | 0.17446 | 1.1558 |
4957 | 0.17236 | 0.17446 | 1.2203 |
4962 | 0.17225 | 0.17446 | 1.2850 |
5177 | 0.16751 | 0.16581 | 1.0121 |
5182 | 0.1674 | 0.16581 | 0.9471 |
5187 | 0.16729 | 0.16581 | 0.8820 |
5192 | 0.16718 | 0.16581 | 0.8167 |
11,399 | 0.05119 | 0.05154 | 0.6759 |
11,404 | 0.05112 | 0.05154 | 0.8138 |
11,409 | 0.05105 | 0.05154 | 0.9520 |
11,414 | 0.05098 | 0.05154 | 1.0906 |
11,419 | 0.05092 | 0.05154 | 1.2097 |
15,156 | 0.02545 | 0.02520 | 1.0000 |
15,161 | 0.02545 | 0.02520 | 1.0000 |
15,166 | 0.02545 | 0.02520 | 1.0000 |
15,171 | 0.02544 | 0.02520 | 0.9611 |
15,176 | 0.02544 | 0.02520 | 0.9611 |
15,181 | 0.02544 | 0.02520 | 0.9611 |
Time, s | Experimental Weight of the Coating, g [28] | Model Predicted Weight of Coating, g | % Absolute Error |
---|---|---|---|
0 | 0.29896 | 0.29865 | 0.1041 |
5 | 0.29885 | 0.29865 | 0.0674 |
10 | 0.29878 | 0.29865 | 0.0440 |
15 | 0.29878 | 0.29865 | 0.0440 |
20 | 0.29875 | 0.29865 | 0.0339 |
1821 | 0.25632 | 0.25835 | 0.7936 |
1826 | 0.2562 | 0.25835 | 0.8408 |
1831 | 0.25609 | 0.25835 | 0.8841 |
1836 | 0.25598 | 0.25835 | 0.9274 |
1841 | 0.25586 | 0.25835 | 0.9748 |
1926 | 0.25394 | 0.25404 | 0.0397 |
1931 | 0.25383 | 0.25404 | 0.0831 |
1936 | 0.25372 | 0.25404 | 0.1265 |
1941 | 0.25361 | 0.25404 | 0.1699 |
1946 | 0.25349 | 0.25404 | 0.2173 |
1951 | 0.25338 | 0.25404 | 0.2608 |
3331 | 0.22327 | 0.22327 | 0.0013 |
3336 | 0.22316 | 0.22327 | 0.0480 |
3341 | 0.22305 | 0.22327 | 0.0974 |
3346 | 0.22295 | 0.22327 | 0.1423 |
14,495 | 0.0284 | 0.02816 | 0.8315 |
14,500 | 0.02839 | 0.02816 | 0.7966 |
14,505 | 0.02838 | 0.02816 | 0.7616 |
14,510 | 0.02838 | 0.02816 | 0.7616 |
14,515 | 0.02837 | 0.02816 | 0.7266 |
Time, s | Experimental Weight of the Coating, g [28] | Model Predicted Weight of Coating, g | % Absolute Error |
---|---|---|---|
600 | 0.28801 | 0.28625 | 0.6128 |
605 | 0.2879 | 0.28625 | 0.5749 |
610 | 0.28778 | 0.28625 | 0.5334 |
615 | 0.28767 | 0.28625 | 0.4954 |
620 | 0.28756 | 0.28625 | 0.4573 |
2081 | 0.25686 | 0.25870 | 0.7182 |
2086 | 0.25676 | 0.25870 | 0.7574 |
2091 | 0.25665 | 0.25870 | 0.8006 |
2096 | 0.25655 | 0.25870 | 0.8399 |
2101 | 0.25645 | 0.25870 | 0.8792 |
2321 | 0.25197 | 0.24954 | 0.9642 |
2326 | 0.25187 | 0.24954 | 0.9249 |
2331 | 0.25177 | 0.24954 | 0.8855 |
2336 | 0.25167 | 0.24954 | 0.8462 |
2341 | 0.25157 | 0.24954 | 0.8067 |
5838 | 0.17955 | 0.17776 | 0.9969 |
5843 | 0.17945 | 0.17776 | 0.9418 |
5848 | 0.17934 | 0.17776 | 0.8810 |
5853 | 0.17924 | 0.17776 | 0.8257 |
16.941 | 0.02516 | 0.02536 | 0.7775 |
16.946 | 0.02516 | 0.02536 | 0.7775 |
16.951 | 0.02516 | 0.02536 | 0.7775 |
16.956 | 0.02516 | 0.02536 | 0.7775 |
16.961 | 0.02515 | 0.02536 | 0.8176 |
16.966 | 0.02515 | 0.02536 | 0.8176 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, R.K.; Sharma, J.; Shrivastava, R.; Thapliyal, D.; Verros, G.D. Modeling of Surfactant-Enhanced Drying of Poly(styrene)-p-xylene Polymeric Coatings Using Machine Learning Technique. Coatings 2021, 11, 1529. https://doi.org/10.3390/coatings11121529
Arya RK, Sharma J, Shrivastava R, Thapliyal D, Verros GD. Modeling of Surfactant-Enhanced Drying of Poly(styrene)-p-xylene Polymeric Coatings Using Machine Learning Technique. Coatings. 2021; 11(12):1529. https://doi.org/10.3390/coatings11121529
Chicago/Turabian StyleArya, Raj Kumar, Jyoti Sharma, Rahul Shrivastava, Devyani Thapliyal, and George D. Verros. 2021. "Modeling of Surfactant-Enhanced Drying of Poly(styrene)-p-xylene Polymeric Coatings Using Machine Learning Technique" Coatings 11, no. 12: 1529. https://doi.org/10.3390/coatings11121529
APA StyleArya, R. K., Sharma, J., Shrivastava, R., Thapliyal, D., & Verros, G. D. (2021). Modeling of Surfactant-Enhanced Drying of Poly(styrene)-p-xylene Polymeric Coatings Using Machine Learning Technique. Coatings, 11(12), 1529. https://doi.org/10.3390/coatings11121529