Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates
Abstract
:1. Introduction
2. Experimental
2.1. Substrates
2.2. Electrolytes
2.3. Electrochemical Setup
2.4. Materials Characterization
3. Results
3.1. Cu-Ag at Ruthenium Substrates
3.2. Cu-Ag at Si(001) Substrates
4. Discussion
4.1. Cu Dissolution Peak at n-Si(001)
4.2. Nucleation Kinetics at Initial Stage of CuAg at n-Si(001)
4.3. Impact of Nucleation Kinetics on the Cu-Ag Morphology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barmak, K.; Lucadamo, G.A.; Cabral, C.; Lavoie, C.; Harper, J.M.E. Dissociation of dilute immiscible copper alloy thin films. J. Appl. Phys. 2000, 87, 2204–2214. [Google Scholar] [CrossRef]
- Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: A green approach. Mater. Res. Bull. 2011, 46, 384–389. [Google Scholar] [CrossRef]
- Oudbashi, O.; Shekofteh, A. Chemical and microstructural analysis of some Achaemenian silver alloy artefacts from Hamedan, western Iran. Period. Mineral. 2015, 84, 419–434. [Google Scholar]
- Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for decorative applications: Recent trends in research and development. Coatings 2018, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Chen, F. Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. J. Appl. Electrochem. 2013, 43, 667–677. [Google Scholar] [CrossRef]
- Gang, L.; Anderson, B.G.; van Grondelle, J.; van Santen, R.A.; van Gennip, W.J.H.; Niemantsverdriet, J.W.; Kooyman, P.J.; Knoester, A.; Brongersma, H.H. Alumina-Supported Cu-Ag Catalysts for Ammonia Oxidation to Nitrogen at Low Temperature. J. Catal. 2002, 206, 60–70. [Google Scholar] [CrossRef]
- Wang, L.; Higgins, D.C.; Ji, Y.; Morales-Guio, C.G.; Chan, K.; Hahn, C.; Jaramillo, T.F. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl. Acad. Sci. USA 2020, 117, 12572–12575. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, S.; Shiratsuchi, R.; Nogami, G. Pulsed Electroreduction of CO2 on Cu-Ag Alloy Electrodes. J. Electrochem. Soc. 2000, 147, 1864. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Verma, S.; Ma, S.; Fister, T.T.; Timoshenko, J.; Frenkel, A.I.; Kenis, P.J.A.; Gewirth, A.A. Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797. [Google Scholar] [CrossRef]
- Choi, J.; Kim, M.J.; Ahn, S.H.; Choi, I.; Jang, J.H.; Ham, Y.S.; Kim, J.J.; Kim, S.-K. Electrochemical CO2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition. Chem. Eng. J. 2016, 299, 37–44. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.J.; Yong, S.H.; Kwon, O.J.; Kim, S.-K.; Kim, J.J. Facile formation of Cu-Ag film by electrodeposition for the oxidation-resistive metal interconnect. J. Electrochem. Soc. 2012, 159, D253. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, S.; Lin, Y.; Yang, Z.; Liu, L. Cu–Ag core–shell nanowires for electronic skin with a petal molded microstructure. J. Mater. Chem. C 2015, 3, 9594–9602. [Google Scholar] [CrossRef]
- Lee, C.; Kim, N.R.; Koo, J.; Lee, Y.J.; Lee, H.M. Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology 2015, 26, 455601. [Google Scholar] [CrossRef] [PubMed]
- Sreedhar, N.Y.; Sunil Kumar, M.; Krishnaveni, K. Sensitive determination of chlorpyrifos using Ag/Cu alloy nanoparticles and graphene composite paste electrode. Sens. Actuators B 2015, 210, 475–482. [Google Scholar] [CrossRef]
- Easow, J.S.; Selvaraju, T. Unzipped catalytic activity of copper in realizing bimetallic Ag@Cu nanowires as a better amperometric H2O2 sensor. Electrochim. Acta 2013, 112, 648–654. [Google Scholar] [CrossRef]
- Bharati, M.S.S.; Chandu, B.; Rao, S.V. Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Adv. 2019, 9, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Navas, M.P.; Soni, R.K. Laser-Generated Bimetallic Ag-Au and Ag-Cu Core-Shell Nanoparticles for Refractive Index Sensing. Plasmonics 2015, 10, 681–690. [Google Scholar] [CrossRef]
- Clarke, O.J.R.; St. Marie, G.J.H.; Brosseau, C.L. Evaluation of an Electrodeposited Bimetallic Cu/Ag Nanostructured Screen Printed Electrode for Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Investigations. J. Electrochem. Soc. 2017, 164, B3091–B3095. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Wang, H.; Barrow, C.J.; Yang, W. Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 10968–10971. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.N.J.; Light, T.B.; Halder, N.C.; Lukens, W.E. Structure of a Vapor-Quenched AgCu Alloy. J. Appl. Phys. 1968, 39, 3690–3693. [Google Scholar] [CrossRef]
- Chen, H.; Zuo, J.-M. Structure and phase separation of Ag–Cu alloy thin films. Acta Mater. 2007, 55, 1617–1628. [Google Scholar] [CrossRef]
- Uenishi, K.; Kobayashi, K.F.; Ishihara, K.N.; Shingu, P.H. Formation of a super-saturated solid solution in the Ag-Cu system by mechanical alloying. Mater. Sci. Eng. A 1991, 134, 1342–1345. [Google Scholar] [CrossRef]
- Najafabadi, R.; Srolovitz, D.J.; Ma, E.; Atzmon, M. Thermodynamic properties of metastable Ag-Cu alloys. J. Appl. Phys. 1993, 74, 3144–3149. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, M.; Hikino, S.; Tanabe, R.; Matsunaga, M.; Sano, Y. Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method. Cryst. Eng. Comm. 2010, 12, 3900–3908. [Google Scholar] [CrossRef]
- Strehle, S.; Menzel, S.; Wendrock, H.; Acker, J.; Wetzig, K. Microstructural investigation of electrodeposited CuAg-thin films. Microelectron. Eng. 2003, 70, 506–511. [Google Scholar] [CrossRef]
- Bernasconi, R.; Hart, J.L.; Lang, A.C.; Magagnin, L.; Nobili, L.; Taheri, M.L. Structural properties of electrodeposited Cu-Ag alloys. Electrochim. Acta 2017, 251, 475–481. [Google Scholar] [CrossRef]
- Liang, D.; Shao, W.; Zangari, G. Selection of Phase Formation in Electroplated Ag-Cu Alloys. J. Electrochem. Soc. 2016, 163, D40–D48. [Google Scholar] [CrossRef]
- Bernasconi, R.; Nobili, L.; Magagnin, L. Electrodeposition of Supersaturated CuAg Alloys in Pyrophosphate-Iodide Electrolytes. ECS Trans. 2014, 58, 53–60. [Google Scholar] [CrossRef]
- Jeon, Y.; Choe, S.; Kim, H.C.; Kim, M.J.; Kim, J.J. Electrodeposition of Cu-Ag films in ammonia-based electrolyte. J. Alloys Compd. 2019, 775, 639–646. [Google Scholar] [CrossRef]
- Reyna-González, J.M.; Reyes-López, J.C.; Aguilar-Martínez, M. Silver and silver–copper electrodeposition from a pyridinium-based ionic liquid. Electrochim. Acta 2013, 94, 344–352. [Google Scholar] [CrossRef]
- Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. Nanoporous Au structures by dealloying Au/Ag thermal-or laser-dewetted bilayers on surfaces. Superlattices Microstruct. 2017, 103, 28–47. [Google Scholar] [CrossRef]
- Guisbiers, G.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Velázquez-Salazar, J.J.; Mendoza-Perez, R.; Robledo-Torres, J.A.; Rodriguez-Lopez, J.-L.; Montejano-Carrizales, J.M.; Whetten, R.L.; José-Yacamán, M. Electrum, the Gold–Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules. ACS Nano 2016, 10, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Oyamatsu, D.; Nishizawa, M.; Kuwabata, S.; Yoneyama, H. Underpotential deposition of silver onto gold substrates covered with self-assembled monolayers of alkanethiols to induce intervention of the silver between the monolayer and the gold substrate. Langmuir 1998, 14, 3298–3302. [Google Scholar] [CrossRef]
- Budevski, E.B.; Staikov, G.T.; Lorenz, W.J. 4.3 3D Phase Formation on UPD Modified Foreign Substrate Sufaces. In Electrochemical Phase Formation and Growth; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 180–199. [Google Scholar]
- Shao, W.; Sun, Y.; Giurlani, W.; Innocenti, M.; Zangari, G. Estimating electrodeposition properties and processes: Cu-Ag alloy at n-Si(001) and Ru substrates from acidic sulfate bath. Electrochim. Acta 2022, 403, 139695. [Google Scholar] [CrossRef]
- Shao, W.; Sun, Y.; Xu, Y.; Zangari, G. Depolarization of Cu electrodeposition from acidic sulfate bath in the presence of Ag: A cyclic-voltammetry study. Electrochim. Acta 2022, 403, 139695. [Google Scholar]
- Ueda, M.; Mito, Y.; Ohtsuka, T. Electrodeposition of Sb-Te Alloy in AlCl3-NaCl-KCl Molten Salt. Mater. Trans. 2008, 49, 1720–1722. [Google Scholar] [CrossRef]
- Tsai, Y.-D.; Hu, C.-C. Composition Control of the Eutectic Sn-Based Alloys: Sn-Ag, Sn-Cu, Sn-Ag-Cu, From Simple Plating Baths. J. Electrochem. Soc. 2011, 158, D527. [Google Scholar] [CrossRef]
- Allmann, R.; Hinek, R. The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Gupta, A.; Paramanik, D.; Varma, S.; Jacob, C. CVD growth and characterization of 3C-SiC thin films. Bull. Mater. Sci. 2004, 27, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Grujicic, D.; Pesic, B. Electrodeposition of copper: The nucleation mechanisms. Electrochim. Acta 2002, 47, 2901–2912. [Google Scholar] [CrossRef]
- Isa, N.C.; Mohd, Y.; Zaki, M.M.; Mohamad, S.S. Characterization of copper coating electrodeposited on stainless steel substrate. Int. J. Electrochem. Sci 2017, 12, 6010–6021. [Google Scholar]
- Shao, W.; Zangari, G. Dendritic Growth and Morphology Selection in Copper Electrodeposition from Acidic Sulfate Solutions Containing Chlorides. J. Phys. Chem. C 2009, 113, 10097–10102. [Google Scholar] [CrossRef]
- Krumm, R.; Guel, B.; Schmitz, C.; Staikov, G. Nucleation and growth in electrodeposition of metals on n-Si (111). Electrochim. Acta 2000, 45, 3255–3262. [Google Scholar] [CrossRef]
- Holze, R. Table 5.2. Exchange current densities and rate constants in aqueous systems at miscellaneous surfaces: Datasheet from Landolt-Börnstein—Group IV Physical Chemistry. In Electrochemical Thermodynamics and Kinetics; Springer: Berlin/Heidelberg, Germany; Volume 9A, Available online: https://materials.springer.com/lb/docs/sm_lbs_978-3-540-45316-1_23 (accessed on 10 December 2021). [CrossRef]
- Pentland, N.; Bockris, J.O.M.; Sheldon, E. Hydrogen Evolution Reaction on Copper, Gold, Molybdenum, Palladium, Rhodium, and Iron. J. Electrochem. Soc. 1957, 104, 182. [Google Scholar] [CrossRef]
- Gossner, K.; Mansfeld, F. Die pH-Abhängigkeit der kathodischen Wasserstoffabscheidung an Kupfer, Silber und Gold. Z. Phys. Chem. 1968, 58, 19–35. [Google Scholar] [CrossRef]
- Muñoz, E.C.; Schrebler, R.S.; Cury, P.K.; Suárez, C.A.; Córdova, R.A.; Gómez, C.H.; Marotti, R.E.; Dalchiele, E.A. The Influence of Poly(ethylene oxide) and Illumination on the Copper Electrodeposition Process onto n-Si(100). J. Phys. Chem. B 2006, 110, 21109–21117. [Google Scholar] [CrossRef] [PubMed]
- Barna, P.B.; Radnóczi, G. 3—Structure formation during deposition of polycrystalline metallic thin films. In Metallic Films for Electronic, Optical and Magnetic Applications; Barmak, K., Coffey, K., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 67–120. [Google Scholar]
- Zaumseil, P. High-resolution characterization of the forbidden Si 200 and Si 222 reflections. J. Appl. Crystallogr. 2015, 48, 528–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, J.; Reitzle, A.; Bunk, O.; Zegenhagen, J.; Kolb, D. Metal deposition on n-Si (111): H electrodes. Electrochim. Acta 2000, 45, 4599–4605. [Google Scholar] [CrossRef]
- Balsano, R.; Matsubayashi, A.; LaBella, V.P. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy. AIP Adv. 2013, 3, 112110. [Google Scholar] [CrossRef]
- Oskam, G.; Long, J.; Natarajan, A.; Searson, P. Electrochemical deposition of metals onto silicon. J. Phys. D Appl. Phys. 1998, 31, 1927. [Google Scholar] [CrossRef]
- Khelladi, M.; Mentar, L.; Azizi, A.; Sahari, A.; Kahoul, A. Electrochemical nucleation and growth of copper deposition onto FTO and n-Si (100) electrodes. Mater. Chem. Phys. 2009, 115, 385–390. [Google Scholar] [CrossRef]
- Quiroga Argañaraz, M.B.; Vázquez, C.I.; Lacconi, G.I. Copper electrodeposition onto hydrogenated Si(111) surfaces: Influence of thiourea. J. Electroanal. Chem. 2010, 639, 95–101. [Google Scholar] [CrossRef]
- Tao, M.; Udeshi, D.; Agarwal, S.; Maldonado, E.; Kirk, W. Negative Schottky barrier between titanium and n-type Si (001) for low-resistance ohmic contacts. Solid-State Electron. 2004, 48, 335–338. [Google Scholar] [CrossRef]
- Oskam, G.; Vereecken, P.M.; Searson, P.C. Electrochemical Deposition of Copper on n-Si/TiN. J. Electrochem. Soc. 1999, 146, 1436. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M. Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si (111): Evolution with film thickness and annealing time. J. Appl. Phys. 2010, 107, 104321. [Google Scholar] [CrossRef]
- Villamil, R.; Cordeiro, G.; Matos, J.; D’Elia, E.; Agostinho, S. Effect of sodium dodecylsulfate and benzotriazole on the interfacial behavior of Cu/Cu (II), H2SO4. Mater. Chem. Phys. 2003, 78, 448–452. [Google Scholar] [CrossRef]
- Foadi, F.; ten Brink, G.H.; Mohammadizadeh, M.R.; Palasantzas, G. Roughness dependent wettability of sputtered copper thin films: The effect of the local surface slope. J. Appl. Phys. 2019, 125, 244307. [Google Scholar] [CrossRef]
- Feng, X.; Mo, Y.; Zhao, Y.; Jiang, S. Understanding the temperature and size dependence of the contact angle of Cu/Si(111): A molecular dynamics study. Comput. Mater. Sci. 2018, 150, 222–229. [Google Scholar] [CrossRef]
- Astley, D.; Harrison, J.; Thirsk, H. Electrocrystallization of mercury, silver and palladium. Trans. Faraday Soc. 1968, 64, 192–201. [Google Scholar] [CrossRef]
- Sluyters-Rehbach, M.; Wijenberg, J.H.O.J.; Bosco, E.; Sluyters, J.H. The theory of chronoamperometry for the investigation of electrocrystallization: Mathematical description and analysis in the case of diffusion-controlled growth. J. Electroanal. Chem. 1987, 236, 1–20. [Google Scholar] [CrossRef]
- Scharifker, B.R.; Mostany, J. Electrochemical Nucleation and Growth. In Encyclopedia of Electrochemistry; Bard, A.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 512–539. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, W.; Sun, Y.; Zangari, G. Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates. Coatings 2021, 11, 1563. https://doi.org/10.3390/coatings11121563
Shao W, Sun Y, Zangari G. Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates. Coatings. 2021; 11(12):1563. https://doi.org/10.3390/coatings11121563
Chicago/Turabian StyleShao, Wenbo, Yunkai Sun, and Giovanni Zangari. 2021. "Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates" Coatings 11, no. 12: 1563. https://doi.org/10.3390/coatings11121563
APA StyleShao, W., Sun, Y., & Zangari, G. (2021). Electrodeposition of Cu-Ag Alloy Films at n-Si(001) and Polycrystalline Ru Substrates. Coatings, 11(12), 1563. https://doi.org/10.3390/coatings11121563