RETRACTED: Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Band Structure
2.2. Optical Biosensor
3. Result and Discussion
Deformations Effects on Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hosseinzadeh Sani, M.; Ghanbari, A.; Saghaei, H. An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quantum Electron. 2020, 52, 1–5. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, J.S. An SDN-Based Packet Scheduling Scheme for Transmitting Emergency Data in Mobile Edge Computing Environments. Hum.-Cent. Comput. Inf. Sci. 2021, 11, 28. [Google Scholar] [CrossRef]
- Ahmad, A.; Jini, D.; Aravind, M.; Parvathiraja, C.; Ali, R.; Kiyani, M.Z.; Alothman, A. A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arabian J. Chem. 2020, 13, 8717–8722. [Google Scholar] [CrossRef]
- Dai, H.; Li, J.; Kuang, Y.; Liao, J.; Zhang, Q.; Kang, Y. Multiscale Fuzzy Entropy and PSO-SVM Based Fault Diagnoses for Airborne Fuel Pumps. Hum.-Cent. Comput. Inf. Sci. 2021, 11, 25. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Liu, C.; Luo, X. Characterization of the Complete Mitochondrial Genome of Acanthacorydalis fruhstorferi van der Weele (Megaloptera: Corydalidae). J. Kans. Entomol. Soc. 2021, 93, 267–281. [Google Scholar] [CrossRef]
- Kashif, M.; Jaafar, E.; Bhadja, P.; Low, F.W.; Sahari, S.K.; Hussain, S.; Al-Tamrah, S.A. Effect of potassium permanganate on morphological, structural and electro-optical properties of graphene oxide thin films. Arabian J. Chem. 2021, 14, 102953. [Google Scholar] [CrossRef]
- Tang, W.; Wan, S.; Yang, Z.; Teschendorff, A.E.; Zou, Q.; Sahinalp, C. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics 2018, 34, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, X.; Zhu, Q.; Li, K.; Lu, Y.; Zhou, X.; Guo, T. Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. Light Sci. Appl. 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, K.; Li, K. A Game Approach to Multi-Servers Load Balancing with Load-Dependent Server Availability Consideration. IEEE Trans. Cloud Comput. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Li, K.; Buyya, R. A New Service Mechanism for Profit Optimizations of a Cloud Provider and Its Users. IEEE Trans. Cloud Comput. 2021, 9, 14–26. [Google Scholar] [CrossRef]
- Xiao, G.; Li, K.; Chen, Y.; He, W.; Zomaya, A.Y.; Li, T. CASpMV: A Customized and Accelerative SpMV Framework for the Sunway TaihuLight. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 131–146. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Li, J.; Li, S.; Cheng, T. A sensor-compatible polarization filter based on photonic crystal fiber with dual-open-ring channel by surface plasmon resonance. Optik 2019, 193, 162868. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, F.; Zhang, Z.; Chen, X.; Huang, H.; Wang, D.; Tang, J.; Fang, X.; Fang, D.; Ho, J.C.; et al. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron–hole tube structure. Nano Lett. 2020, 20, 2654–2659. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Meng, L.; Chen, X.; Chen, X.; Su, L.; Yuan, L.; Huang, G. A strategy to significantly improve the classification accuracy of LIBS data: Application for the determination of heavy metals in Tegillarca granosa. Plasma Sci. Technol. 2021, 23, 85503. [Google Scholar] [CrossRef]
- Saleem, M.; Irfan, M.; Tabassum, S.; Albaqami, M.D.; Javed, M.S.; Hussain, S.; Zuber, M. Experimental and theoretical study of highly porous lignocellulose assisted metal oxide photoelectrodes for dye-sensitized solar cells. Arabian J. Chem. 2021, 14, 102937. [Google Scholar] [CrossRef]
- Hou, C.; Yin, M.; Lan, P.; Wang, H.; Nie, H.; Ji, X. Recent progress in the research of Angelica sinensis (Oliv.) Diels polysaccharides: Extraction, purification, structure and bioactivities. Chem. Biol. Technol. Agric. 2021, 8, 13. [Google Scholar] [CrossRef]
- Maqsood, M.; Mehmood, I.; Kharel, R.; Muhammad, K.; Lee, J.; Alnumay, W.S. Exploring the Role of Deep Learning in Industrial Applications: A Case Study on Coastal Crane Casting Recognition. Hum. Cent. Comput. Inf. Sci. 2021, 11, 1–14. [Google Scholar]
- Salim, M.M.; Shanmuganathan, V.; Loia, V.; Park, J.H. Deep Learning Enabled Secure IoT Handover Authentication for Blockchain Networks. Hum.-Cent. Comput. Inf. Sci. 2021, 11, 12. [Google Scholar] [CrossRef]
- Blundo, C.; De Maio, C.; Parente, M.; Siniscalchi, L. Targeted Advertising That Protects the Privacy of Social Networks Users. Hum.-Cent. Comput. Inf. Sci. 2021, 11, 18. [Google Scholar] [CrossRef]
- Duan, M.; Li, K.; Li, K.; Tian, Q. A Novel Multi-Task Tensor Correlation Neural Network for Facial Attribute Prediction. ACM Trans. Intell. Syst. Technol. 2021, 12, 3:1–3:22. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Teo, S.G.; Zou, X.; Li, K.; Zeng, Z. Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks. ACM Trans. Knowl. Discov. Data 2020, 14, 42:1–42:23. [Google Scholar] [CrossRef]
- Zhou, X.; Li, K.; Yang, Z.; Gao, Y.; Li, K. Efficient Approaches to k Representative G-Skyline Queries. ACM Trans. Knowl. Discov. Data 2020, 14, 58:1–58:27. [Google Scholar] [CrossRef]
- Duan, M.; Li, K.; Ouyang, A.; Win, K.N.; Li, K.; Tian, Q. EGroupNet: A Feature-enhanced Network for Age Estimation with Novel Age Group Schemes. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 42:1–42:23. [Google Scholar] [CrossRef]
- Sani, M.H.; Khosroabadi, S.; Talebiyan, R. Ultra-narrow band of filter and 6-channel demultiplexer based on Nano-cavity resonance. In Proceedings of the 3rd International Conference on Electrical Engineering, Mechanical Engineering and Computer Engineering Science, Sofia, Bulgaria, 9–11 August 2019. [Google Scholar]
- Yang, W.; Li, K.; Li, K. A Pipeline Computing Method of SpTV for Three-Order Tensors on CPU and GPU. ACM Trans. Knowl. Discov. Data 2019, 13, 63:1–63:27. [Google Scholar] [CrossRef]
- Zhou, X.; Li, K.; Yang, Z.; Xiao, G.; Li, K. Progressive Approaches for Pareto Optimal Groups Computation. IEEE Trans. Knowl. Data Eng. 2019, 31, 521–534. [Google Scholar] [CrossRef]
- Mei, J.; Li, K.; Tong, Z.; Li, Q.; Li, K. Profit Maximization for Cloud Brokers in Cloud Computing. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 190–203. [Google Scholar] [CrossRef]
- Chen, Y.; Li, K.; Yang, W.; Xiao, G.; Xie, X.; Li, T. Performance-Aware Model for Sparse Matrix-Matrix Multiplication on the Sunway TaihuLight Supercomputer. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 923–938. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Bilal, K.; Zhou, X.; Li, K.; Yu, P.S. A Bi-layered Parallel Training Architecture for Large-Scale Convolutional Neural Networks. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 965–976. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Liang, J.; Li, K. Service Reliability in an HC: Considering from the Perspective of Scheduling with Load-Dependent Machine Reliability. IEEE Trans. Reliab. 2019, 68, 476–495. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Ouyang, A.; Li, K. FlinkCL: An OpenCL-Based In-Memory Computing Architecture on Heterogeneous CPU-GPU Clusters for Big Data. IEEE Trans. Comput. 2018, 67, 1765–1779. [Google Scholar] [CrossRef]
- Duan, M.; Li, K.; Li, K. An Ensemble CNN2ELM for Age Estimation. IEEE Trans. Inf. Forensics Secur. 2018, 13, 758–772. [Google Scholar] [CrossRef]
- Sami, P.; Shen, C.; Sani, M.H. Ultra-fast all optical half-adder realized by combining AND/XOR logical gates using a nonlinear nanoring resonator. Appl. Opt. 2020, 59, 6459–6465. [Google Scholar] [CrossRef]
- Maleki, M.J.; Mir, A.; Soroosh, M. Ultra-fast all-optical full-adder based on nonlinear photonic crystal resonant cavities. Photonic Netw. Commun. 2021, 41, 93–101. [Google Scholar] [CrossRef]
- Sani, M.H.; Tabrizi, A.A.; Saghaei, H.; Karimzadeh, R. An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure. Opt. Quantum. Electron. 2020, 52, 1–10. [Google Scholar] [CrossRef]
- Moniem, T.A. All-optical digital 4× 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 2016, 63, 735–741. [Google Scholar] [CrossRef]
- Fakouri-Farid, V.; Andalib, A. Design and simulation of an all optical photonic crystal-based comparator. Optik 2018, 172, 241–248. [Google Scholar] [CrossRef]
- Jile, H. Realization of an all-optical comparator using beam interference inside photonic crystal waveguides. Appl. Opt. 2020, 59, 3714–3719. [Google Scholar] [CrossRef]
- Sani, M.H.; Sami, P.; Shen, C.; Saghaei, H. A Novel Design of Optical RS Flip-Flop Based on Nonlinear NanoCavity in Hexagonal Photonic Crystal Substrate. Int. J. Sci. Res. Sci. Eng. Technol. 2021, 9, 29–37. [Google Scholar]
- Sani, M.H.; Khosroabadi, S.; Nasserian, M. High performance of an all-optical two-bit analog-to-digital converter based on Kerr effect nonlinear nanocavities. Appl. Opt. 2020, 59, 1049–1057. [Google Scholar] [CrossRef]
- Pahari, N.; Guchhait, A. All-optical Serial Data Transfer between Registers using optical non-linear materials. Optik 2012, 123, 462–466. [Google Scholar] [CrossRef]
- Martinez-Dorantes, M.; Alt, W.; Gallego, J.; Ghosh, S.; Ratschbacher, L.; Völzke, Y.; Meschede, D. Fast nondestructive parallel readout of neutral atom registers in optical potentials. Phys. Rev. Lett. 2017, 119, 180503. [Google Scholar] [CrossRef]
- Kuramochi, E.; Nozaki, K.; Shinya, A.; Takeda, K.; Sato, T.; Matsuo, S.; Taniyama, H.; Sumikura, H.; Notomi, M. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photonics 2014, 8, 474–481. [Google Scholar] [CrossRef]
- Alexoudi, T.; Kanellos, G.T.; Pleros, N. Optical RAM and integrated optical memories: A survey. Light Sci. Appl. 2020, 9, 1–6. [Google Scholar] [CrossRef]
- Uda, T.; Ishii, A.; Kato, Y.K. Single carbon nanotubes as ultrasmall all-optical memories. ACS Photonics 2018, 5, 559–565. [Google Scholar] [CrossRef]
- Qing, X.; Sani, M.H. Optical refractive index sensor for detection of N2, He and CO2 gases based on square resonance nanocavity in 2D photonic crystal. Opt. Commun. 2021, 490, 126940. [Google Scholar] [CrossRef]
- Hosseinzadeh Sani, M.; Saghaei, H.; Mehranpour, M.A.; Asgariyan Tabrizi, A. A novel all-optical sensor design based on a tunable resonant nanocavity in photonic crystal microstructure applicable in MEMS accelerometers. Photonic Sens. 2021, 11, 457–471. [Google Scholar] [CrossRef]
- Klimov, V.V.; Pavlov, A.A.; Treshin, I.V.; Zabkov, I.V. Fano resonances in a photonic crystal covered with a perforated gold film and its application to bio-sensing. J. Phys. D Appl. Phys. 2017, 50, 285101. [Google Scholar] [CrossRef]
- Sani, M.H.; Khosroabadi, S. A novel design and analysis of high-sensitivity biosensor based on nano-cavity for detection of blood component, diabetes, cancer and glucose concentration. IEEE Sens. J. 2020, 20, 7161–7168. [Google Scholar] [CrossRef]
- Erim, N.; Erim, M.N.; Kurt, H. An optical sensor design using surface modes of low-symmetric photonic crystals. IEEE Sens. J. 2019, 19, 5566–5571. [Google Scholar] [CrossRef]
- Pareek, S.; Jain, U.; Bharadwaj, M.; Chauhan, N. A label free nanosensing platform for the detection of cervical cancer through analysis of ultratrace DNA hybridization. Sens. Bio-Sens. Res. 2021, 33, 100444. [Google Scholar] [CrossRef]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y.K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z.; Ghoreishi, S.A. Attomolar detection of low-molecular weight antibiotics using midinfrared-resonant toroidal plasmonic metachip technology. Phys. Rev. Appl. 2019, 12, 034018. [Google Scholar] [CrossRef]
- Jain, U.; Singh, A.; Kuchhal, N.K.; Chauhan, N. Glycated hemoglobin biosensing integration formed on Au nanoparticle-dotted tubular TiO2 nanoarray. Anal. Chim. Acta 2016, 945, 67–74. [Google Scholar] [CrossRef]
- Jain, U.; Gupta, S.; Chauhan, N. Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites. Int. J. Biol. Macromol. 2017, 101, 896–903. [Google Scholar] [CrossRef]
- Makaram, P.; Owens, D.; Aceros, J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics 2014, 4, 27–46. [Google Scholar] [CrossRef]
- Lončar, M.; Vučković, J.; Scherer, A. Methods for controlling positions of guided modes of photonic-crystal waveguides. JOSA B 2001, 18, 1362–1368. [Google Scholar] [CrossRef]
- Guo, S.; Albin, S. Numerical techniques for excitation and analysis of defect modes in photonic crystals. Opt. Express 2003, 11, 1080–1089. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Araromi, O.A.; Graule, M.A.; Dorsey, K.L.; Castellanos, S.; Foster, J.R.; Hsu, W.H.; Passy, A.E.; Vlassak, J.J.; Weaver, J.C.; Walsh, C.J.; et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020, 587, 219–224. [Google Scholar] [CrossRef]
- Yan, Q.; Peng, B.; Su, G.; Cohan, B.E.; Major, T.C.; Meyerhoff, M.E. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal. Chem. 2011, 83, 8341–8346. [Google Scholar] [CrossRef]
- Tavousi, A.; Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 2018, 429, 166–174. [Google Scholar] [CrossRef]
- Chopra, H.; Kaler, R.S.; Painam, B. Photonic crystal waveguide-based biosensor for detection of diseases. J. Nanophotonics 2016, 10, 036011. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Hameed, M.F.; Areed, N.F.; El-Okr, M.M.; Obayya, S.S. Analysis of Highly Sensitive Photonic Crystal Biosensor for Glucose Monitoring. Appl. Comput. Electromagn. Soc. J. 2016, 31, 32–44. [Google Scholar]
- Arafa, S.; Bouchemat, M.; Bouchemat, T.; Benmerkhi, A.; Hocini, A. Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection. Opt. Commun. 2017, 384, 93–100. [Google Scholar] [CrossRef]
- Arunkumar, R.; Suaganya, T.; Robinson, S. Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens. 2019, 9, 69–77. [Google Scholar] [CrossRef]
- Almpanis, E.; Papanikolaou, N. Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications. Microelectron. Eng. 2016, 159, 60–63. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, T.; Wan, R.; Xu, Y.; Zhao, C.; Guo, S. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface. Opt. Express 2018, 26, 10179–10187. [Google Scholar] [CrossRef] [PubMed]
Parameters | Symbols | Quantity | Unit |
---|---|---|---|
Central wave-length | λ0 | 1550 | nm |
Normalized band gap (TM) | a/λ | 0.276–0.446 | - |
The corresponding photonic bandgap | λ | 1345–2173 | nm |
Lattice constant | a | 600 | nm |
Rod radius | r | 120 | nm |
Background refractive index (air) | ngb | 1 | - |
Linear refractive index | n0 | 3.46 | - |
Radius of the red tube | RC1 | 540 | nm |
The cyan tube radius | RC2 | 660 | nm |
X length | ∆x | 5400 | nm |
Y length | ∆y | 11,400 | nm |
Analytic Used | Refractive Index |
---|---|
Sample1 | RI |
Basal cells (Normal) | 1.360 |
Basal cells (Cancerous) | 1.380 |
Hela cells (normal) | 1.368 |
Hela Cells (Cancerous) | 1.392 |
MDA-MB-231 Cells (normal) | 1.385 |
MDA-MB-231 Cells (Cancerous) | 1.399 |
Sample2 | RI |
Normal Cells of diabetes | 1.350 |
Effected Cells of diabetes | 1.410 |
Analytic | RI | λ0 (µm) | FWHM (nm) | Q.f | T.E (%) | FOM (RIU−1) | S (nm/RIU) |
---|---|---|---|---|---|---|---|
Sample1 | |||||||
Basal cell (Normal) | 1.360 | 1.59315 | 2.2 | 840.45 | 100 | - | Ref |
Basal cell (Cancerous) | 1.380 | 1.63101 | 2.0 | 946.50 | 94 | 940.475 | 1893 |
Hela cell (normal) | 1.368 | 1.60010 | 2.2 | 746.36 | 99 | - | Ref |
Hela Cell (Cancerous) | 1.392 | 1.63951 | 1.9 | 864.25 | 95 | 805.283 | 1642 |
MDA-MB-231 Cell (normal) | 1.385 | 1.60511 | 2.1 | 464.33 | 93 | - | Ref |
MDA-MB-231 Cell (Cancerous) | 1.399 | 1.63611 | 1.9 | 861.11 | 91 | 1109.51 | 2214 |
Sample2 | |||||||
Normal diabetic cells | 1.350 | 1.56235 | 1.8 | 867.97 | 95 | - | Ref |
Effected diabetic cells | 1.410 | 1.64001 | 1.9 | 863.31 | 100 | 699.96 | 1294 |
Ref | Detect Samples | Q.f | FOM (RIU−1) | TE (%) | S (nm/RIU) |
---|---|---|---|---|---|
Ref [63] | Blood, Tear’s fluid | 6141 | 48,543 ± 118 | 100 | 10,000 |
Ref [64] | Blood | 650 ± 50 | 1400 ± 200 | 80 | 2500 |
Ref [65] | Blood and Tears fluid | 1082 | - | - | 6.5764 |
Ref [66] | Glucose | - | - | 86 | 422 |
Ref [67] | Glucose | 1.11 × 105 | 1117 | 92 | 462 |
Ref [68] | Blood | 262 | - | 100 | - |
Ref [69] | - | - | 88 | 98 | 263 |
Ref [69] | - | 1264 | 84 | 90 | 840 |
This work | Tears fluid | 946.50 | 9104.017 ± 606.93 | 100 | 20,393 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chupradit, S.; Ashfaq, S.; Bokov, D.; Suksatan, W.; Jalil, A.T.; Alanazi, A.M.; Sillanpaa, M. RETRACTED: Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure. Coatings 2021, 11, 1564. https://doi.org/10.3390/coatings11121564
Chupradit S, Ashfaq S, Bokov D, Suksatan W, Jalil AT, Alanazi AM, Sillanpaa M. RETRACTED: Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure. Coatings. 2021; 11(12):1564. https://doi.org/10.3390/coatings11121564
Chicago/Turabian StyleChupradit, Supat, Shameen Ashfaq, Dmitry Bokov, Wanich Suksatan, Abduladheem Turki Jalil, Amer M. Alanazi, and Mika Sillanpaa. 2021. "RETRACTED: Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure" Coatings 11, no. 12: 1564. https://doi.org/10.3390/coatings11121564
APA StyleChupradit, S., Ashfaq, S., Bokov, D., Suksatan, W., Jalil, A. T., Alanazi, A. M., & Sillanpaa, M. (2021). RETRACTED: Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure. Coatings, 11(12), 1564. https://doi.org/10.3390/coatings11121564