Study of Crack Sensitivity of Peritectic Steels
Abstract
:1. Introduction
2. Calculation Procedures
2.1. Segregation Model
2.2. Model Calculation
2.2.1. Determination of Liquidus Temperature and Solidus Temperature
2.2.2. Determination of Peritectic Phase Transformation Temperature during Solidification
2.3. Model Validation
3. Results and Discussion
3.1. Analysis of Crack Sensitivity
3.2. Validation of Crack Sensitivity
4. Conclusions
- (1)
- Based on the analysis of the CK microsegregation model, which took the effect of the peritectic transformation on the solute segregation into account, the zero ductility temperature (ZDT) and zero strength temperature (ZST) of Fe–C–0.32Si–1.6Mn–0.01P–0.015S steel were determined. The calculated results are in good agreement with that measured in the literature.
- (2)
- The model to calculate the strain by comprehensively considering both the high temperature mechanical properties and the peritectic transformation during peritectic steel solidification was proposed to evaluate the crack sensitivity of peritectic steels produced in the brittle temperature range (ZDT < TB < LIT) in the present work, and the results were compared with the longitudinal crack ratio of peritectic steels in the literature showing a good agreement with the statistical longitudinal crack data from literature.
- (3)
- Validated by the statistical data from steel plants and literature, the model proposed in the present work can be used to effectively predict the crack sensitivity of peritectic steels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, M.; Yu, C.H.; Sato, H.; Tsui, Y.; Shibata, H.; Emi, T. Origin of heat transfer anomaly and solidifying shell deformation of peritectic steels in continuous casting. Trans. Iron Steel Inst. Jpn. 2007, 36, S171–S174. [Google Scholar] [CrossRef] [Green Version]
- Saraswat, R.; Maijer, D.M.; Lee, P.D.; Mills, K.C. The Effect of Mould Flux Properties on thermomechanical behaviour during billet continuous casting. ISIJ Int. 2007, 47, 95–104. [Google Scholar] [CrossRef]
- Konishi, J.; Militzer, M.; Samarasekera, I.V.; Brimacombe, J.K. Modeling the formation of longitudinal facial cracks during continu-ous casting of hypoperitectic steel. Metall. Mater. Trans. B 2002, 33, 413–423. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Fu, T.; Wang, J.; Shen, F.; Cui, K. Microstructure evolution and growth mechanism of Si-MoSi2 composite coatings on TZM (Mo–0.5Ti–0.1Zr–0.02 C) alloy. J. Alloys Compd. 2021, 894, 162403. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, T.; Cui, K.; Shen, F.; Wang, J.; Yu, L.; Mao, H. Evolution of surface morphology, roughness and texture of tungsten disilicide coatings on tungsten substrate. Vacuum 2021, 191, 110297. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, K.; Fu, T.; Wang, J.; Shen, F.; Zhang, X.; Yu, L. Formation of MoSi2 and Si/MoSi2 coatings on TZM (Mo–0.5 Ti–0.1 Zr–0.02 C) alloy by hot dip silicon-plating method. Ceram. Int. 2021, 47, 23053–23065. [Google Scholar] [CrossRef]
- Kim, K.-H.; Yeo, T.-J.; Oh, K.H.; Lee, D.N. Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks. ISIJ Int. 1996, 36, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Harste, K.; Schwerdtfeger, K. Shrinkage of round iron-carbon ingots during solidification and subsequent cooling. ISIJ Int. 2003, 43, 1011–1020. [Google Scholar] [CrossRef]
- Won, Y.M.; Han, H.N.; Yeo, T.-J.; Oh, K.H. Analysis of solidification cracking using the specific crack susceptibility. ISIJ Int. 2000, 40, 129–136. [Google Scholar] [CrossRef]
- Cui, K.; Fu, T.; Zhang, Y.; Wang, J.; Mao, H.; Tan, T. Microstructure and mechanical properties of CaAl12O19 reinforced Al2O3-Cr2O3 composites. J. Eur. Ceram. Soc. 2021, 41, 7935–7945. [Google Scholar] [CrossRef]
- Kim, K.-H.; Oh, K.H.; Lee, D.N. Mechanical behavior of carbon steels during continuous casting. Scr. Mater. 1996, 34, 301–307. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, Y.; Fu, T.; Hussain, S.; Saad AlGarni, T.; Wang, J.; Zhang, X.; Ali, S. Effects of Cr2O3 content on micro-structure and mechanical properties of Al2O3 matrix composites. Coatings 2021, 11, 234. [Google Scholar] [CrossRef]
- Guo, L.; Li, W.; Bobadilla, M.; Yao, M.; Shen, H. High temperature mechanical properties of micro-alloyed carbon steel in the mushy zone. Steel Res. Int. 2010, 81, 387–393. [Google Scholar] [CrossRef]
- Won, Y.M.; Yeo, T.-J.; Seol, D.J.; Oh, K.H. A new criterion for internal crack formation in continuously cast steels. Met. Mater. Trans. A 2000, 31, 779–794. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Cui, K.; Fu, T.; Gao, J.; Hussain, S.; AlGarni, T.S. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust—A review. J. Clean. Prod. 2021, 298, 126788. [Google Scholar] [CrossRef]
- Clyne, T.W.; Kurz, W. Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A 1981, 12, 965–971. [Google Scholar] [CrossRef]
- Won, Y.-M.; Thomas, B. Simple model of microsegregation during solidification of steels. Met. Mater. Trans. A 2001, 32, 1755–1767. [Google Scholar] [CrossRef]
- Han, Z.Q.; Cai, K.K. Study on a mathematical model of microsegregation in continuously cast slab. Acta Metall. Sin. 2000, 36, 869–873. [Google Scholar]
- Zhu, L.G.; Liu, Z.; Han, Y.H. A microsegregation model in the two-phase region of an ND steel continuous casting billet. Chin. J. Eng. 2019, 41, 461–469. [Google Scholar]
- Cai, Z.Z.; Zhu, M.Y. Microsegregation of solute elements in solidifying mushy zone of steel and its effect on longitudinal sur-face cracks of continuous casting strand. Acta Metall. Sin. 2009, 45, 55–61. [Google Scholar]
- Choudhary, S.K.; Ghosh, A. Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ Int. 2009, 49, 1819–1827. [Google Scholar] [CrossRef] [Green Version]
- Ueshima, Y.; Mizoguchi, S.; Matsumiya, T.; Kajioka, H. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Met. Mater. Trans. A 1986, 17, 845–859. [Google Scholar] [CrossRef]
- Ma, Z.T.; Dieter, J. Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ Int. 1998, 38, 46–52. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wei, J.; Cai, K.K. A couple mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel. ISIJ Int. 2002, 42, 958–963. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Liu, Z.; Nagai, K. Effect of phosphorus on sulfide precipitation in strip cast low carbon steel. J. Jpn. Inst. Met. 2006, 70, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Kobayashi, Y.; Yang, J.; Nagai, K.; Kuwabara, M. “In-situ” Observation of the δ/γ phase transformation on the sur-face of low carbon steel containing phosphorus at various cooling rates. ISIJ Int. 2006, 46, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Jablonka, A.; Harste, K.; Schwerdtfeger, K. Thermomechanical properties of iron and iron-carbon alloys: Density and thermal contraction. Steel Res. 1991, 62, 24–33. [Google Scholar] [CrossRef]
- Xu, J.; He, S.; Jiang, X.; Wu, T.; Wang, Q. Analysis of crack susceptibility of regular carbon steel slabs using volume-based shrinkage index. ISIJ Int. 2013, 53, 1812–1817. [Google Scholar] [CrossRef] [Green Version]
- Schmidtman, E.; Rakoski, F. Bnfluß des kohlenstoffgehaltes von 0.015 bis 1% und der gefügestruktur auf das hochtempera-turfestigkeits- und-zähigkeitsverhalten von baustählen nach der erstarrung aus der schmelze. Steel Res. Int. 1983, 54, 357–361. [Google Scholar]
- Clyne, T.W.; Wolf, M.; Kurz, W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting. Met. Mater. Trans. A 1982, 13, 259–266. [Google Scholar] [CrossRef]
- Davies, G.J.; Shin, Y.K. Solidification Technology in the Foundry and Cast House; The Metal Society: London, UK, 1979; p. 517. [Google Scholar]
- Fredriksson, H.; Stjerndahl, J. Microstructure evolution during the solidification of steel. Met. Sci. 1982, 16, 575–580. [Google Scholar] [CrossRef]
- Shibata, H.; Arai, Y.; Suzuki, M.; Emi, T. Kinetics of peritectic reaction and transformation in Fe–C alloys. Met. Mater. Trans. A 2000, 31, 981–991. [Google Scholar] [CrossRef]
- Blazek, K.E.; Saucedo, I.G.; Tsai, H.T. An investigation on mold heat transfer during continuous casting. Steelmak. Conf. Proc. 1988, 71, 411–421. [Google Scholar]
Element | kiδ/L | kiγ/L | Ds,iδ × 104 (m2⋅s−1) | Ds,iγ × 104 (m2⋅s−1) | mi |
---|---|---|---|---|---|
C | 0.19 | 0.34 | 0.0127 × Exp (81,379/RT) | 0.15 × Exp (−143,511/RT) | 78 |
Si | 0.77 | 0.52 | 8 × Exp (−248,948/RT) | 0.3 × Exp (−251,458/RT) | 7.6 |
Mn | 0.76 | 0.78 | 0.76 × Exp (−224,430/RT) | 0.055 × Exp (−249,366/RT) | 4.9 |
P | 0.23 | 0.13 | 2.9 × Exp (−230,120/RT) | 0.01 × Exp (−182,841/RT) | 34.4 |
S | 0.05 | 0.035 | 4.56 × Exp (−214,639/RT) | 2.4 × Exp (−223,426/RT) | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Cheng, S.; Li, Y. Study of Crack Sensitivity of Peritectic Steels. Coatings 2022, 12, 15. https://doi.org/10.3390/coatings12010015
Liu K, Cheng S, Li Y. Study of Crack Sensitivity of Peritectic Steels. Coatings. 2022; 12(1):15. https://doi.org/10.3390/coatings12010015
Chicago/Turabian StyleLiu, Kai, Shusen Cheng, and Yaqiang Li. 2022. "Study of Crack Sensitivity of Peritectic Steels" Coatings 12, no. 1: 15. https://doi.org/10.3390/coatings12010015
APA StyleLiu, K., Cheng, S., & Li, Y. (2022). Study of Crack Sensitivity of Peritectic Steels. Coatings, 12(1), 15. https://doi.org/10.3390/coatings12010015