Three-Dimensional Radiative Bioconvective Flow of a Sisko Nanofluid with Motile Microorganisms
Abstract
:1. Introduction
2. Mathematical Modeling
3. Numerical Solution
4. Solution Verification
5. Results and Discussion
6. Conclusions
- ⮚
- An increase in the velocity due to the mixed convection parameter was observed, which was enhanced in the shear-thinning case.
- ⮚
- The hindering effects on the velocity due to the bioconvection Rayleigh number was relatively slower when shear-thickening effects were dominant.
- ⮚
- The nanofluid temperature was enhanced due to the Biot number and surface-heating source parameter. The enhancement in temperature in the case of shear thickening was qualitatively slower as compared to the shear-thinning case.
- ⮚
- An increase in the nanofluid concentration due to the thermophoretic parameter was more progressive when shear-thinning features were considered.
- ⮚
- The microorganism profile decreased with the bioconvection Lewis number and Peclet number.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
velocity components (m·s−1) | coordinate axes (m) | ||
temperature(K) | nanoparticles concentration (kg·m−3) | ||
kinematic viscosity (m2·s−1) | wall temperature (K) | ||
free stream temperature (K) | ambient concentration (kg·m−3) | ||
density (kg·m−3) | Brownian diffusion coefficient (m2·s−1) | ||
thermophoresis diffusion coefficient (m2·s−1) | dynamic viscosity (N·s·m−2) | ||
gravity | heat capacity ratio | ||
mean absorption coefficient | microorganism diffusion constant | ||
Stefan–Boltzmann constant | radiative flux | ||
chemotaxis constant | volume suspension coefficient | ||
Sisko fluid materials constants | electrical conductivity | ||
magnetic field strength | volume expansion coefficient | ||
density of nanoparticles | density of microorganisms | ||
Sisko fluid material parameter | Prandtl number | ||
buoyancy ratio parameter | mixed convection parameter | ||
bioconvection Rayleigh number | magnetic parameter | ||
radiation parameter | temperature ratio parameter | ||
thermophoresis parameter | Brownian motion parameter | ||
Lewis number | Peclet number | ||
bioconvection Lewis number | Biot number | ||
local Reynolds number | local Nusselt number | ||
local Sherwood number | motile density number |
References
- Choi, S.U.S.; Eastman, J. Enhancing thermal conductivity of fluids with nanoparticles. ASME 2001, 231, 718–720. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Iqbal, N.; Yasmin, H.; Kometa, B.K.; Attiya, A.A. Effects of convection on Sisko fluid with peristalsis in an asymmetric channel. Math. Comput. Appl. 2020, 25, 52. [Google Scholar] [CrossRef]
- Ali, M.; Irfan, M.; Khan, W.A.; Sultan, F.; Shahzad, M.; Khan, M. Physical significance of chemical processes and Lorentz’s forces aspects on Sisko fluid flow in curved configuration. Soft Comput. 2020, 24, 16213–16223. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Rathore, S.K. An analytical investigation of pressure-driven flow and heat transfer of a Sisko fluid flowing through parallel plates with viscous dissipation. Sadhana 2020, 45, 1–17. [Google Scholar] [CrossRef]
- Nabil, T.; Mostapha, D.R. Hall current and joule heating effects on peristaltic flow of a Sisko fluid with mild stenosis through a porous medium in a tapered artery with slip and convective boundary conditions. Sains Malays. 2020, 49, 1175–1190. [Google Scholar]
- Toghraie, D.; Esfahani, N.N.; Zarringhalam, M.; Shirani, N.; Rostami, S. Blood flow analysis inside different arteries using non-Newtonian Sisko model for application in biomedical engineering. Comput. Methods Progr. Biomed. 2020, 190, 105338. [Google Scholar] [CrossRef] [PubMed]
- Agoor, B.M.; Sayed-Ahmed, M.E.; Alam, H. Peristaltic flow with heat transfer on Sisko fluid in a ciliated arteries. Int. J. Fluid Mech. Therm. Sci. 2020, 6, 70–78. [Google Scholar] [CrossRef]
- Ferdows, M.; Reddy, M.G.; Sun, S.; Alzahrani, F. Two-dimensional gyrotactic microorganisms flow of hydromagnetic power-law nanofluid past an elongated sheet. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef]
- Gangadhar, K.; Kannan, T.; Sakthivel, G.; Dasaradha Ramaiah, K. Unsteady free convective boundary layer flow of a nanofluid past a stretching surface using a spectral relaxation method. Int. J. Ambient Energy 2020, 41, 609–616. [Google Scholar] [CrossRef]
- Jawad, M.; Shah, Z.; Khan, A.; Khan, W.; Kumam, P.; Islam, S. Entropy generation and heat transfer analysis in MHD unsteady rotating flow for aqueous suspensions of carbon nanotubes with nonlinear thermal radiation and viscous dissipation effect. Entropy 2019, 21, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Sultan, F.; Khan, W.A.; Shahzad, M.; Arif, H. Important features of expanding/contracting cylinder for cross magneto-nanofluid flow. Chaos Solitons Fractals 2020, 133, 109656. [Google Scholar] [CrossRef]
- Nisar, Z.; Hayat, T.; Alsaedi, A.; Ahmad, B. Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid. Int. Commun. Heat Mass Transf. 2020, 116, 104655. [Google Scholar] [CrossRef]
- Muhammad, T.; Waqas, H.; Khan, S.A.; Ellahi, R.; Sait, S.M. Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. J. Therm. Anal. Calorim. 2020, 143, 1–16. [Google Scholar] [CrossRef]
- Muhammad, K.; Hayat, T.; Alsaedi, A.; Ahmad, B. Melting heat transfer in squeezing flow of base fluid (water), nanofluid (CNTs + water), and hybrid nanofluid (CNTs + CuO + water). J. Therm. Anal. Calorim. 2020, 1–18. [Google Scholar] [CrossRef]
- Hayat, T.; Taseer Muhammad, B.; Ahmad, S.; Shehzad, A. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition. J. Magn. Magn. Mater. 2016, 413, 1–8. [Google Scholar] [CrossRef]
- Hayat, T.; Taseer Muhammad, B.; Ahmad, S.; Shehzad, A.; Alsaedi, A. On three-dimensional boundary layer flow of Sisko nanofluid with magnetic field effects. Adv. Powder Technol. 2016, 27, 504–512. [Google Scholar] [CrossRef]
- Pal, D.; Mandal, G. Magnetohydrodynamic stagnation-point flow of Sisko nanofluid over a stretching sheet with suction. Propuls. Power Res. 2020, 9, 408–422. [Google Scholar] [CrossRef]
- Khan, M.I. Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. Int. Commun. Heat Mass Transf. 2021, 122, 105177. [Google Scholar] [CrossRef]
- Chu, Y.M.; Khan, M.I.; Khan, N.B.; Kadry, S.; Khan, S.U.; Tlili, I.; Nayak, M.K. Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis. Int. Commun. Heat Mass Transf. 2020, 118, 104893. [Google Scholar] [CrossRef]
- Wager, H. On the effect of gravity upon the movements and aggregation of Euglena Viridis, Ehrb., and other micro-organisms. Philos. Trans. R. Soc. Lond. B 1911, 201, 333–390. [Google Scholar]
- Platt, J.R. “Bioconvection pattern” in cultures of the free-swimming organism. Science 1961, 133, 1766–1767. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A. Bio-thermal convection induced by two different species of microorganisms. Int. Commun. Heat Mass Transf. 2011, 38, 548–553. [Google Scholar] [CrossRef]
- Zohra, F.T.; Uddin, M.J.; Basir, F.; Ismail, A.I.M. Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 2019, 234, 83–97. [Google Scholar] [CrossRef]
- Zhang, T.; Khan, S.U.; Imran, M.; Tlili, I.; Waqas, H.; Ali, N. Activation energy and thermal radiation aspects in bioconvection flow of rate-type nanoparticles configured by a stretching/shrinking disk. J. Energy Resour. Technol. 2020, 142, 1–19. [Google Scholar] [CrossRef]
- Kotha, G.; Kolipaula, V.R.; Rao, M.V.S.; Penki, S.; Chamkha, A.J. Internal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms. Eur. Phys. J. Plus 2020, 135, 1–19. [Google Scholar] [CrossRef]
- Siddiq, M.K.; Ashraf, M. Bioconvection of micropolar nanofluid with modified Cattaneo–Christov theories. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef]
- Kumaraswamy Naidu, K.; Harish Babu, D.; Harinath Reddy, S.; Satya Narayana, P.V. Radiation and partial slip effects on MHD jeffrey nanofluid containing gyrotactic microorganisms over a stretching surface. J. Therm. Sci. Eng. Appl. 2020, 1–28. [Google Scholar] [CrossRef]
- Abdelmalek, Z.; Ullah Khan, S.; Waqas, H.; ANabwey, H.; Tlili, I. Utilization of second-order slip, activation energy, and viscous dissipation consequences in the thermally developed flow of third-grade nanofluid with gyrotactic microorganisms. Symmetry 2020, 12, 309. [Google Scholar] [CrossRef] [Green Version]
- Abdelmalek, Z.; Khan, S.U.; Waqas, H.; Riaz, A.; Khan, I.A.; Tlili, I. A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy, and second-order slip. J. Therm. Anal. Calorim. 2020, 1–13. [Google Scholar] [CrossRef]
- Waqas, H.; Imran, M.; Muhammad, T.; Sait, S.M.; Ellahi, R. On bio-convection thermal radiation in Dar-cy–Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over-stretching cylinder/plate. In-ternational Journal of Numerical Methods for Heat & Fluid Flow.tion and Brownian Motion. Mach. Learn. Res. 2020, 4, 51. [Google Scholar]
- Wang, Y.; Waqas, H.; Tahir, M.; Imran, M.; Jung, C.Y. Effective prandtl aspects on bio-convective thermally developed magnetized tangent hyperbolic nanoliquid with gyrotactic microorganisms and second-order velocity slip. IEEE Access 2019, 7, 130008–130023. [Google Scholar] [CrossRef]
- Li, Y.; Waqas, H.; Imran, M.; Farooq, U.; Mallawi, F.; Tlili, I. A Numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip. Symmetry 2020, 12, 393. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, A.; Nabwey, H.A. Microorganisms time-mixed convection nanofluid flow by the stagnation domain of an impulsively rotating sphere due to Newtonian heating. Results Phys. 2020, 103347. [Google Scholar] [CrossRef]
- Khan, S.U.; Waqas, H.; Muhammad, T.; Imran, M.; Ullah, M.Z. Significance of activation energy and Wu’s slip features in Cross nanofluid with motile microorganisms. Commun. Theor. Phys. 2020, 72, 105001. [Google Scholar] [CrossRef]
- Ansari, M.S.; Otegbeye, O.; Trivedi, M.; Goqo, S.P. Magnetohydrodynamic bio-convective casson nanofluid flow: A numerical simulation by paired quasilinearisation. J. Appl. Comput. Mech. 2020. [Google Scholar] [CrossRef]
Hayat et al. [17] | Present Results | |||
---|---|---|---|---|
0.0 | 1.0394 | 1.0050 | 1.0395 | 1.0048 |
0.5 | 1.2730 | 1.2076 | 1.2731 | 1.2075 |
1.0 | 1.4700 | 1.4714 | 1.4700 | 1.4714 |
Parameters | |||||
---|---|---|---|---|---|
0.2 0.4 0.8 | 0.1 | 0.1 | 0.4 | 1.0726 1.0709 1.0675 | 1.4402 1.4392 1.4370 |
0.1 | 0.8 1.6 2.2 | – | – | 1.2735 1.2746 1.2748 | 1.6531 1.6554 1.6573 |
– | – | 0.8 1.6 2.2 | – | 1.2999 1.3308 1.3542 | 1.6796 1.7127 1.7380 |
– | – | – | 0.2 0.4 0.8 | 1.1952 1.2731 1.4160 | 1.5934 1.6512 1.7614 |
Parameters | |||||
---|---|---|---|---|---|
0.2 0.4 0.8 | 0.1 | 0.1 | 0.4 | 0.0911 0.0910 0.0908 | 0.1477 0.1446 0.1444 |
0.1 | 0.8 1.6 2.2 | – | – | 0.2983 0.2990 0.2997 | 0.4405 0.4499 0.4504 |
– | – | 0.8 1.6 2.2 | – | 0.2978 0.2988 0.2996 | 0.4367 0.4435 0.4521 |
– | – | – | 0.2 0.4 0.8 | 0.2816 0.2986 0.3633 | 0.4307 0.4410 0.4856 |
Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.2 0.4 0.8 | 0.1 | 0.1 | 0.4 | 2.0 | 0.6 | 0.3885 0.3891 0.3932 | 0.5128 0.5234 0.5297 | 0.3371 0.3154 0.2904 | 0.4231 0.4346 0.4454 |
0.1 | 0.8 1.6 2.2 | – | – | – | – | 0.5360 0.5352 0.5346 | 0.4700 0.4686 0.4676 | 0.4267 0.4054 0.3909 | 0.4134 0.3889 0.3667 |
– | – | 0.8 1.6 2.2 | – | – | – | 0.5347 0.5325 0.5307 | 0.4686 0.4655 0.4631 | 0.4378 0.4205 0.4056 | 0.4102 0.4067 0.3956 |
– | – | – | 0.2 0.4 0.8 | – | – | 0.5443 0.5367 0.5199 | 0.4753 0.4711 0.4617 | 0.4479 0.4334 0.4056 | 0.4156 0.3924 0.3854 |
– | – | – | – | 2.5 3.0 3.5 | – | 0.5921 0.6383 0.6775 | 0.5259 0.5733 0.6145 | 0.5303 0.5554 0.5934 | 0.4865 0.5276 0.5467 |
– | – | – | – | – | 0.8 1.4 1.8 | 0.4917 0.4271 0.3963 | 0.4288 0.3713 0.3453 | 0.4165 0.3704 0.32565 | 0.3776 0.3467 0.3156 |
Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.2 0.4 0.8 | 0.1 | 0.1 | 0.4 | 2.0 | 0.3 | 2.0 | – | 0.8145 0.8256 0.9310 | 0.7954 0.8167 0.8966 |
0.1 | 0.8 1.6 2.2 | – | – | – | – | – | – | 0.8040 0.8028 0.8019 | 0.7050 0.7030 0.7014 |
– | – | 0.8 1.6 2.2 | – | – | – | – | – | 0.8021 0.7987 0.7960 | 0.7029 0.6983 0.6947 |
– | – | – | 0.2 0.4 0.8 | – | – | – | – | 0.8165 0.8050 0.7799 | 0.7129 0.7067 0.6925 |
– | – | – | – | 2.5 3.0 3.5 | – | – | 0.8882 0.9575 1.0162 | 0.7889 0.8600 0.9218 | |
– | – | – | – | – | 0.1 0.4 0.8 | – | – | 0.8180 0.8045 0.7956 | 0.7870 0.7756 0.7434 |
– | – | – | – | – | – | 3.0 4.0 5.0 | 0.7991 0.7952 0.7922 | 0.7012 0.6976 0.6950 | |
– | – | – | – | – | – | – | 0.1 0.4 0.8 | 0.8990 1.0234 1.1014 | 0.7854 0.7901 0.9912 |
Parameters | |||||||
---|---|---|---|---|---|---|---|
0.2 0.4 0.8 | 0.1 | 0.1 | 0.4 | 0.1 | 2.0 | 1.0853 1.1012 1.1145 | 0.9534 0.9611 0.9917 |
0.1 | 0.8 1.6 2.2 | – | – | – | – | 1.0751 1.0738 1.0728 | 0.9429 0.9405 0.9386 |
– | – | 0.8 1.6 2.2 | – | – | – | 1.0724 1.0678 1.0642 | 0.9378 0.9336 0.9287 |
– | – | – | 0.2 0.4 0.8 | – | – | 1.0916 1.0762 1.0422 | 0.9539 0.9450 0.9243 |
– | – | – | – | 0.5 1.0 1.5 | – | 1.3580 1.7185 2.0874 | 1.2022 1.5295 1.8625 |
– | – | – | – | – | 3.0 4.0 5.0 | 0.2375 0.2382 0.2388 | 0.2285 0.2290 0.2293 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge-JiLe, H.; Waqas, H.; Khan, S.U.; Khan, M.I.; Farooq, S.; Hussain, S. Three-Dimensional Radiative Bioconvective Flow of a Sisko Nanofluid with Motile Microorganisms. Coatings 2021, 11, 335. https://doi.org/10.3390/coatings11030335
Ge-JiLe H, Waqas H, Khan SU, Khan MI, Farooq S, Hussain S. Three-Dimensional Radiative Bioconvective Flow of a Sisko Nanofluid with Motile Microorganisms. Coatings. 2021; 11(3):335. https://doi.org/10.3390/coatings11030335
Chicago/Turabian StyleGe-JiLe, Hu, Hassan Waqas, Sami Ullah Khan, Muhammad Ijaz Khan, Shahid Farooq, and Sajjad Hussain. 2021. "Three-Dimensional Radiative Bioconvective Flow of a Sisko Nanofluid with Motile Microorganisms" Coatings 11, no. 3: 335. https://doi.org/10.3390/coatings11030335
APA StyleGe-JiLe, H., Waqas, H., Khan, S. U., Khan, M. I., Farooq, S., & Hussain, S. (2021). Three-Dimensional Radiative Bioconvective Flow of a Sisko Nanofluid with Motile Microorganisms. Coatings, 11(3), 335. https://doi.org/10.3390/coatings11030335