Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of La2ZnO4
2.3. Characterization
2.4. Catalysis for P-Nitrophenol Conversion
3. Results and Discussion
3.1. X-ray Diffraction
3.2. Scanning Electron Microscopy
3.3. Energy Dispersive Spectroscopy
3.4. FTIR Analysis
3.5. UV-Visible Spectroscopy
3.6. Photoluminescence Observation
3.7. Catalysis Process
3.8. Kinetics of the Reduction Catalysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Škríba, A.; Janková, Š.; Váňa, J.; Barták, P.; Bednář, P.; Fryčák, P.; Kučera, L.; Kurka, O.; Lemr, K.; Macíková, P.; et al. Protonation sites and fragmentations of para-aminophenol. Int. J. Mass Spectrom. 2013, 337, 18–23. [Google Scholar] [CrossRef]
- Schultz, S.; DeSilva, M.; Gu, T.T.; Qiang, M.; Whang, K. Effects of the analgesic acetaminophen (paracetamol) and its para-aminophenol metabolite on viability of mouse-cultured cortical. Neurons. Basic Clin. Pharmacol. Toxicol. 2012, 110, 141–144. [Google Scholar] [CrossRef]
- Gao, L.; Li, R.; Sui, X.; Li, R.; Chen, C.; Chen, Q. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol. 2014, 48, 10191–10197. [Google Scholar] [CrossRef]
- Ma, M.; Yang, Y.; Li, W.; Feng, R.; Li, Z.; Lyu, P.; Ma, Y. Gold nanoparticles supported by amino groups on the surface of magnetite microspheres for the catalytic reduction of 4-nitrophenol. J. Mater. Sci. 2019, 54, 323–334. [Google Scholar] [CrossRef]
- Bano, M.; Naikoo, G.A.; Ahirwar, D.; Thomas, M.; Sheikh, M.U.-D.; Khan, F. Hierarchical synthesis of silver monoliths and their efficient catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol. N. J. Chem. 2016, 40, 6787–6795. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.-Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426–8430. [Google Scholar] [CrossRef]
- Serrà, A.; Artal, R.; Pozo, M.; Garcia-Amorós, J.; Gómez, E. Simple environmentally-friendly reduction of 4-nitrophenol. Catalysts 2020, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.-J.; Wang, A.-J.; Ma, X.; Xiang, R.-Y.; Chen, J.-R.; Feng, J.-J. One-pot synthesis of porous P-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A 2015, 3, 290–296. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Guay, D.; Chaker, M.; Ma, D. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 2014, 6, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-G.; Yan, C.-H. Controlled synthesis of rare earth nanostructures. J. Mater. Chem. 2008, 18, 5046–5059. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chem. A Eur. J. 2003, 9, 5627–5635. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Wang, Z.; Qi, Y.; Zhang, Z.; Zhang, S. Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route. J. Alloys Compd. 2010, 507, 105–111. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, Z.; Huang, X.; Huang, L.; Long, Z.; Wang, Q.; Hou, Y. Synthesis of lanthanum oxide nanosheets by a green carbonation process. Chin. Sci. Bull. 2014, 59, 1864–1867. [Google Scholar] [CrossRef]
- Iranmanesh, T.; Jahani, S.; Foroughi, M.M.; Zandi, M.S.; Nadiki, H.H. Synthesis of La2O3/MWCNT nanocomposite as the sensing element for electrochemical determination of theophylline. Anal. Methods 2020, 12, 4319–4326. [Google Scholar] [CrossRef]
- Teo, S.; Guo, Z.; Xu, Z.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. The role of lanthanum in a nickel oxide-based inverted perovskite solar cell for efficiency and stability improvement. ChemSusChem 2019, 12, 518–526. [Google Scholar] [CrossRef]
- Li, H.; Zheng, B.; Xue, Y.; Liu, S.; Gao, C.; Liu, X. Spray deposited lanthanum doped TiO2 compact layers as electron selective contact for perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 168, 85–90. [Google Scholar] [CrossRef]
- Meng, W.; Hu, R.; Yang, J.; Du, Y.; Li, J.; Wang, H. Influence of lanthanum-doping on photocatalytic properties of BiFeO3 for phenol degradation. Chin. J. Catal. 2016, 37, 1283–1292. [Google Scholar] [CrossRef]
- Meksi, M.; Turki, A.; Kochkar, H.; Bousselmi, L.; Guillard, C.; Berhault, G. The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl. Catal. B Environ. 2016, 181, 651–660. [Google Scholar] [CrossRef]
- Ismail, R.A.; Fadhil, F.A.; Rashed, H.H. Novel route to prepare lanthanum oxide nanoparticles for optoelectronic devices. Int. J. Mod. Phys. B 2020, 34, 2050134. [Google Scholar] [CrossRef]
- Surti, S.; Karp, J.; Muehllehner, G.; Raby, P. Investigation of lanthanum scintillators for 3D PET. In Proceedings of the 2002 IEEE Nuclear Science Symposium Conference Record, Norfolk, VA, USA, 10–16 November 2002. [Google Scholar]
- Thomas, K.; Alexander, D.; Sisira, S.; Biju, P.R.; Unnikrishnan, N.V.; Ittyachen, M.A.; Joseph, C. NUV/blue LED excitable intense green emitting terbium doped lanthanum molybdate nanophosphors for white LED applications. J. Mater. Sci. Mater. Electron. 2017, 28, 17702–17709. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Li, X.; Wang, S. Enhancing quantum yield of CsPb (BrxCl1−x) 3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes. Nano Energy 2020, 77, 105302. [Google Scholar] [CrossRef]
- Luewarasirikul, N.; Kim, H.; Meejitpaisan, P.; Kaewkhao, J. White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses. Opt. Mater. 2017, 66, 559–566. [Google Scholar] [CrossRef]
- Madhu, A.; Eraiah, B.; Manasa, P.; Srinatha, N. Nd3+-doped lanthanum lead boro-tellurite glass for lasing and amplification applications. Opt. Mater. 2018, 75, 357–366. [Google Scholar] [CrossRef]
- Jiang, S.P. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells-A review. Int. J. Hydrog. Energy 2019, 44, 7448–7493. [Google Scholar] [CrossRef]
- Talley, K.R.; Mangum, J.; Perkins, C.L.; Woods-Robinson, R.; Mehta, A.; Gorman, B.P.; Brennecka, G.L.; Zakutayev, A. Synthesis of lanthanum tungsten oxynitride perovskite thin films. Adv. Electron. Mater. 2019, 5, 1900214. [Google Scholar] [CrossRef]
- Mogha, N.K.; Gosain, S.; Masram, D.T. Lanthanum oxide nanoparticles immobilized reduced graphene oxide polymer brush nanohybrid for environmental vitiation of organic dyes. Arab. J. Chem. 2020, 13, 1367–1376. [Google Scholar] [CrossRef]
- Subhan, F.; Aslam, S.; Yan, Z.; Ahmad, A.; Etim, U.; Naeem, M.; Zhen, L.; Ikram, M.; Yaseen, M. Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization. Chem. Eng. J. 2020, 384, 123271. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Al-Saeedi, S.I.; Al-Senani, G.M.; Nafady, A.; Ahamad, T.; Naushad, M.; Stadler, F.J. Fabrication of oxidized graphite supported La2O3/ZrO2 nanocomposite for the photoremediation of toxic fast green dye. J. Mol. Liq. 2019, 277, 738–748. [Google Scholar] [CrossRef]
- Ankamwar, B.G.; Kamble, V.B.; Annsi, J.I.; Sarma, L.S.; Mahajan, C.M. Photocatalytic Degradation of Methylene Blue by ZnO Nanoparticles. J. Nanosci. Nanotechnol. 2017, 17, 1185–1192. [Google Scholar] [CrossRef]
- Ong, C.B.; Mohammad, A.W.; Ng, L.Y. Integrated adsorption-solar photocatalytic membrane reactor for degradation of hazardous Congo red using Fe-doped ZnO and Fe-doped ZnO/rGO nanocomposites. Environ. Sci. Pollut. Res. 2019, 26, 33856–33869. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl. Phys. Lett. 2018, 112, 042106. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Jiang, W.; Liu, C.; Ahmad, W.; Chen, Z.D.; et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Jeong, J.R.; Lee, J.; Lee, S.H.; Kim, S.Y.; Kim, M.J.; Nah, J.; Lee, M.H. In situ formation of graphene/metal oxide composites for high-energy microsupercapacitors. Npg Asia Mater. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. ZnO nanorods array based field-effect transistor biosensor for phosphate detection. J. Colloid Interface Sci. 2017, 498, 292–297. [Google Scholar] [CrossRef]
- Bao, R.; Wang, C.; Peng, Z.; Ma, C.; Dong, L.; Pan, C. Light-emission enhancement in a flexible and size-controllable ZnO nanowire/organic light-emitting diode array by the piezotronic effect. ACS Photonics 2017, 4, 1344–1349. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emit. Diodes A Rev. Opt. Eng. 2019, 58, 010901. [Google Scholar]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, X.; Xu, Z.; Yi, C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int. J. Pharm. 2017, 534, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Oves, M.; Alajmi, M.F.; Hussain, I.; Amir, S.; Ahmed, J.; Rehman, M.T.; El-Seedi, H.R.; Ali, I. Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Adv. 2019, 9, 15357–15369. [Google Scholar] [CrossRef] [Green Version]
- Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 2018, 811, 84–88. [Google Scholar] [CrossRef]
- da Silva, B.L.; Caetano, B.L.; Chiari-Andréo, B.G.; Pietro, R.C.L.R.; Chiavacci, L.A. Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids Surf. B Biointerfaces 2019, 177, 440–447. [Google Scholar] [CrossRef]
- Jaisutti, R.; Lee, M.; Kim, J.; Choi, S.; Ha, T.J.; Kim, J.; Kim, H.; Park, S.K.; Kim, Y.H. Ultrasensitive room-temperature operable gas sensors using p-type Na: ZnO nanoflowers for diabetes detection. ACS Appl. Mater. Interfaces 2017, 9, 8796–8804. [Google Scholar] [CrossRef] [PubMed]
- Eixenberger, J.E.; Anders, C.B.; Wada, K.; Reddy, K.M.; Brown, R.J.; Moreno-Ramirez, J.; Weltner, A.E.; Karthik, C.; Tenne, D.A.; Fologea, D.; et al. Defect engineering of ZnO nanoparticles for bioimaging applications. Acs Appl. Mater. Interfaces 2019, 11, 24933–24944. [Google Scholar] [CrossRef]
- Raja, A.; Rajasekaran, P.; Selvakumar, K.; Arunpandian, M.; Kaviyarasu, K.; Bahadur, S.A.; Swaminathan, M. Visible active reduced graphene oxide-BiVO4-ZnO ternary photocatalyst for efficient removal of ciprofloxacin. Sep. Purif. Technol. 2020, 233, 115996. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, M.; You, B.; Zhang, Q.; Yuan, H.; Ostrikov, K.K. Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue. Appl. Sci. 2018, 8, 353. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.F.; Su Su Zin, A.K.; Chen, Z.; Liow, C.H.; Phan, H.T.; Tan, H.R.; Xu, Q.H.; Ho, G.W. Inverse stellation of CuAu-ZnO multimetallic-semiconductor nanostartube for plasmon-enhanced photocatalysis. ACS Nano 2018, 12, 4512–4520. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-R.; Yu, J.; Choi, S.-J. Fate determination of ZnO in commercial foods and human intestinal cells. Int. J. Mol. Sci. 2020, 21, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Mao, A.; Gao, W.; Bai, H. A facile in situ method to fabricate transparent, flexible polyvinyl alcohol/ZnO film for UV-shielding. Compos. Commun. 2018, 10, 157–162. [Google Scholar] [CrossRef]
- Babaei-Ghazvini, A.; Shahabi-Ghahfarrokhi, I.; Goudarzi, V. Preparation of UV-protective starch/kefiran/ZnO nanocomposite as a packaging film: Characterization. Food Packag. Shelf Life 2018, 16, 103–111. [Google Scholar] [CrossRef]
- Lv, J.; Li, C.; Chai, Z. Defect luminescence and its mediated physical properties in ZnO. J. Lumin. 2019, 208, 225–237. [Google Scholar] [CrossRef]
- Rodnyi, P.; Chernenko, K.; Venevtsev, I. Mechanisms of ZnO luminescence in the visible spectral region. Reg. Opt. Spectrosc. 2018, 125, 372–378. [Google Scholar] [CrossRef]
- Majumder, T.; Dhar, S.; Debnath, K.; Mondal, S.P. Role of S, N co-doped graphene quantum dots as a green photosensitizer with Ag-doped ZnO nanorods for improved electrochemical solar energy conversion. Mater. Res. Bull. 2017, 93, 214–222. [Google Scholar] [CrossRef]
- Subramaniam, V.D.; Prasad, S.V.; Banerjee, A.; Gopinath, M.; Murugesan, R.; Marotta, F.; Sun, X.-F.; Pathak, S. Health hazards of nanoparticles: Understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem. Toxicol. 2019, 42, 84–93. [Google Scholar] [CrossRef]
- Bocca, B.; Caimi, S.; Senofonte, O.; Alimonti, A.; Petrucci, F. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues. Sci. Total Environ. 2018, 630, 922–930. [Google Scholar] [CrossRef]
- Pachiyappan, J.; Gnanasundaram, N.; Rao, G.L. Preparation and characterization of ZnO, MgO and ZnO-MgO hybrid nanomaterials using green chemistry approach. Results Mater. 2020, 7, 100104. [Google Scholar] [CrossRef]
- Deepthi, T.; Balamurugan, K. Effect of yttrium (20%) doping on mechanical properties of rare earth nano lanthanum phosphate (LaPO4) synthesized by aqueous sol-gel process. Ceram. Int. 2019, 45, 18229–18235. [Google Scholar] [CrossRef]
- Khan, M.; Janjua, N.K.; Khan, S.; Qazi, I.; Ali, S.; Saad Algarni, T. Electro-oxidation of ammonia at novel Ag2O−PrO2/γ-Al2O3 catalysts. Coatings 2021, 11, 257. [Google Scholar] [CrossRef]
- Katsui, H.; Kondo, N. Preferred orientations and microstructures of lanthanum phosphate films prepared via laser chemical vapor deposition. J. Cryst. Growth 2019, 519, 46–53. [Google Scholar] [CrossRef]
- Qian, Y.; Qiao, P.; Li, L.; Han, H.; Zhang, H.; Chang, G. Hydrothermal synthesis of lanthanum-doped MgAl-layered double hydroxide/graphene oxide hybrid and its application as flame retardant for thermoplastic polyurethane. Adv. Polym. Technol. 2020, 2020, 1018093. [Google Scholar] [CrossRef]
- Mane, V.; Malavekar, D.; Ubale, S.; Bulakhe, R.; In, I.; Lokhande, C. Binder free lanthanum doped manganese oxide@ graphene oxide composite as high energy density electrode material for flexible symmetric solid state supercapacitor. Electrochim. Acta 2020, 335, 135613. [Google Scholar] [CrossRef]
- Zakirov, M.I.; Semen’Ko, M.P.; Korotchenkov, O.A. A simple sonochemical synthesis of nanosized ZnO from zinc acetate and sodium hydroxide. J. Nano- Electron. Phys. 2018, 10, 05023-1. [Google Scholar] [CrossRef]
- Tinwala, H.; Shah, D.V.; Menghani, J.; Pati, R. Synthesis of La2Ce2O7 nanoparticles by co-precipitation method and its characterization. J. Nanosci. Nanotechnol. 2014, 14, 6072–6076. [Google Scholar] [CrossRef] [PubMed]
- Sescu, A.M.; Harja, M.; Favier, L.; Berthou, L.O.; De Castro, C.G.; Pui, A.; Lutic, D. Zn/La mixed oxides prepared by coprecipitation: Synthesis, characterization and photocatalytic studies. Materials 2020, 13, 4916. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, A.; Meenatchi, B.; Vadivel, S.; Jaganathan, S.; Ladchumananandasivam, R.; Henini, M.; Maaza, M.; Aanand, J.S. Rare earth element (REE) lanthanum doped zinc oxide (La:ZnO) nanomaterials: Synthesis structural optical and antibacterial studies. J. Alloys Compd. 2017, 723, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Salley, S.O.; Ng, K.S. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl. Catal. A: Gen. 2009, 353, 203–212. [Google Scholar] [CrossRef]
- Khan, S.; Shah, S.S.; Anjum, M.A.R.; Khan, M.R.; Janjua, N.K. Electro-oxidation of ammonia over copper oxide impregnated γ-Al2O3 nanocatalysts. Coatings 2021, 11, 313. [Google Scholar] [CrossRef]
- Ashna, R.; Yulizar, Y.; Apriandanu, D. Strobilanthes crispus (B.) leaf extract-assisted green synthesis of ZnO-La2O3 composite and preliminary study of its photocatalytic activity. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Klingenberg, B.; Vannice, M.A. Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem. Mater. 1996, 8, 2755–2768. [Google Scholar] [CrossRef]
- Subhan, M.A.; Fahim, A.M.M.; Saha, P.C.; Rahman, M.M.; Begum, K.; Azad, A.K. Structural study, photoluminescence and photocatalytic properties of La2O3 Fe3O4 ZnO, AgO NiO ZnO and La2O3 AgO ZnO nanocomposites. Nano-Struct. Nano-Objects 2017, 10, 30–41. [Google Scholar] [CrossRef]
- Saif, M.; Hafez, H.; Nabeel, A. Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials. Chemosphere 2013, 90, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.; Wang, Y. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods. J. Alloys Compd. 2011, 509, 396–401. [Google Scholar] [CrossRef]
- Mandlimath, T.R.; Gopal, B. Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J. Mol. Catal. A Chem. 2011, 350, 9–15. [Google Scholar] [CrossRef]
- Zoromba, M.S.; Abdel-Aziz, M. Ecofriendly method to synthesize poly (o-aminophenol) based on solid state polymerization and fabrication of nanostructured semiconductor thin film. Polymer 2017, 120, 20–29. [Google Scholar] [CrossRef]
- Guan, H.; Chao, C.; Lu, Y.; Shang, H.; Zhao, Y.; Yuan, S.; Zhang, B. PtNi nanoparticles embedded in porous silica microspheres as highly active catalysts for p-nitrophenol hydrogenation to p-aminophenol. J. Chem. Sci. 2016, 128, 1355–1365. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Jamal, M.A.; Iftikhar, M.; Ahmad, A.; Hussain, S.; Asghar, H.; Saeed, M.; Yousaf, A.B.; Karri, R.R.; Al-kadhi, N.S.; et al. Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol. Coatings 2021, 11, 537. https://doi.org/10.3390/coatings11050537
Ahmad I, Jamal MA, Iftikhar M, Ahmad A, Hussain S, Asghar H, Saeed M, Yousaf AB, Karri RR, Al-kadhi NS, et al. Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol. Coatings. 2021; 11(5):537. https://doi.org/10.3390/coatings11050537
Chicago/Turabian StyleAhmad, Ikram, Muhammad Asghar Jamal, Miara Iftikhar, Awais Ahmad, Shahid Hussain, Humaira Asghar, Muhammad Saeed, Ammar Bin Yousaf, Rama Rao Karri, Nada Sulaymaniyah Al-kadhi, and et al. 2021. "Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol" Coatings 11, no. 5: 537. https://doi.org/10.3390/coatings11050537
APA StyleAhmad, I., Jamal, M. A., Iftikhar, M., Ahmad, A., Hussain, S., Asghar, H., Saeed, M., Yousaf, A. B., Karri, R. R., Al-kadhi, N. S., Ouladsmane, M., Ghfar, A., & Khan, S. (2021). Lanthanum-Zinc Binary Oxide Nanocomposite with Promising Heterogeneous Catalysis Performance for the Active Conversion of 4-Nitrophenol into 4-Aminophenol. Coatings, 11(5), 537. https://doi.org/10.3390/coatings11050537