Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XPS Compositional Analysis
3.2. XRD Characterization
3.3. SEM and AFM Analysis
3.4. Optical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.D. Concise Inorganic Chemistry, 4th ed.; Chapman-Hall: London, UK, 1991. [Google Scholar]
- Rühle, S.; Anderson, A.Y.; Barad, H.-N.; Kupfer, B.; Bouhadana, Y.; Rosh-Hodesh, E.; Zaban, A. All-oxide photovoltaics. J. Phys. Chem. Lett. 2012, 3, 3755–3764. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Yan, Q.; Dou, Y. Materials for energy storage and conversion based on metal oxides. Recent Patents Mater. Sci. 2012, 5, 199–212. [Google Scholar] [CrossRef]
- Reddy, R.N.; Reddy, R.G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources 2004, 132, 315–320. [Google Scholar] [CrossRef]
- Reddy, R.N.; Reddy, R.G. Electrochemical Capacitor and Hybrid Powder Sources; The Electrochemical Society Proceeding Series; PV 2002-7: Pennington, NJ, USA, 2002. [Google Scholar]
- Xu, C.; Miyazaki, K.; Watanable, T. Humidity sensors using manganese oxides. Sens. Actuators B 1998, 46, 87. [Google Scholar] [CrossRef]
- Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nat. Cell Biol. 2001, 414, 625–627. [Google Scholar] [CrossRef] [PubMed]
- Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 2005, 20, S35–S44. [Google Scholar] [CrossRef]
- Jung, H.W.; Jeong, Y.U. Electrochemical properties of various transition metal oxides for energy storage. Stud. Surf. Sci. Catal. 2006, 159, 633. [Google Scholar]
- Suprun, W.; Lutecki, M.; Glaser, R.; Papp, H.J. Catalytic activity of bifunctional transition metal oxide containing phosphated alumina catalysts in the dehydration of glycerol. Mol. Catal. A Chem. 2011, 342–343, 91–100. [Google Scholar] [CrossRef]
- Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; M-Merchan, W.; Salkar, G.; Saveliev, A.V. Increasing the solar cell power output by coating with transition metal-oxide nanorods. Appl. Energy 2011, 88, 4218–4221. [Google Scholar] [CrossRef]
- Burton, B.B.; Fabreguette, F.H.; George, S.M. Atomic layer deposition of MnO using Bis (ethylcyclopentadienyl) manganese and H2O. Thin Solid Films 2009, 517, 5658–5665. [Google Scholar] [CrossRef]
- Cao, L.; Wang, R.; Xu, Z.; Li, J.; Huang, J.; Li, R.; Li, K. Constructing MnOC bonds in Mn3O4/Super P composite for superior performance in Liion battery. J. Electroanal. Chem. 2017, 798, 1–8. [Google Scholar] [CrossRef]
- Lin, C.C.; Jhan, J.H. Influence of substrate treatment temperatures and bias potential on capacitive manganese-cobalt-zinc oxide thin films deposited by radio frequency sputtering. Electrochim. Acta 2011, 56, 6757–6763. [Google Scholar] [CrossRef]
- Guo, L.W.; Ko, H.J.; Makino, H.; Chen, Y.F.; Inaba, K.; Yao, T.J. Epitaxial growth of Mn3O4 film on MgO(0 0 1) substrate by plasma-assisted molecular beam epitaxy (MBE). Cryst. Growth 1999, 205, 531–536. [Google Scholar] [CrossRef]
- Gorbenko, O.Y.; Graboy, I.E.; Amelichev, V.A.; Bosak, A.A.; Kaul, A.R.; Guttler, B.; Svetchnikov, V.L.; Zandbergen, H.W. The structure and properties of Mn3O4 thin films grown by MOCVD. Solid State Commun. 2002, 124, 15–20. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Renitta, A.; Jereil, S.D.; Alagusundaram, K. Highly (101) oriented MnO2 nanofibers synthesized using novel spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 2015, 26, 9782–9788. [Google Scholar] [CrossRef]
- Yadav, A.A. Influence of electrode mass-loading on the properties of spray deposited Mn3O4 thin films for electrochemical supercapacitors. Thin Solid Films 2016, 608, 88–96. [Google Scholar] [CrossRef]
- Boulila, S.; Ghamnia, M.; Boukhachem, A.; Ouhaibi, A.; Chakhoum, M.A.; Fauquet, C.; Heresanu, V.; Tonneau, D. Photocatalytical properties of NiO nanofilms doped with Ba. Phil. Mag. Lett. 2020, 110, 283–293. [Google Scholar] [CrossRef]
- Benameur, N.; Chakhoum, M.; Boukhachem, A.; Dahamni, M.; Ghamnia, M.; Hacini, N.; Pireaux, J.-P.; Houssiau, L.; Ziouche, A. Investigation of some physical properties of pure and Co-doped MoO3 synthesized on glass substrates by the spray pyrolysis method. J. Electron Spectrosc. Relat. Phenom. 2019, 234, 71–79. [Google Scholar] [CrossRef]
- Li, N.; Tian, Y.; Zhao, J.; Zhang, J.; Zhang, J.; Zuo, W.; Ding, Y. Efficient removal of chromium from water by Mn3O4 @ZnO/Mn3 O4 composite under simulated sunlight irradiation: Synergy of photocatalytic reduction and adsorption. Appl. Catal. B Environ. 2017, 214, 126–136. [Google Scholar] [CrossRef]
- Ilton, E.S.; Droubay, T.C.; Chaka, A.M.; Kovarik, L.; Varga, T.; Arey, B.W.; Kerisit, S.N. Epitaxial single-crystal thin films of MnxTi1−xO2−δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory. Surf. Sci. 2015, 632, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Ilton, E.S.; Post, J.E.; Heaney, P.J.; Ling, F.T.; Kerisit, S.N. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016, 366, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Cerrato, J.M.; Hochella, M.F., Jr.; Knocke, W.R.; Dietrich, A.M.; Cromer, T.F. Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants. Environ. Sci. Technol. 2010, 44, 5881–5886. [Google Scholar] [CrossRef]
- Cerrato, J.M.; Knocke, W.R.; Hochella, M.F., Jr.; Dietrich, A.M.; Jones, A.; Cromer, T.F. Application of XPS and solution chemistry analyses to investigate soluble manganese removal by MnOx(s)-coated media. Environ. Sci. Technol. 2011, 45, 10068–10074. [Google Scholar] [CrossRef] [PubMed]
- Bayram, O.; Guney, H.; Ertargin, M.E.; Igman, E.; Simsek, O. Effect of doping concentration on the structural and optical properties of nanostructured Cu-doped Mn3O4 films obtained by SILAR technique. Appl. Phys. A 2018, 124, 606. [Google Scholar] [CrossRef]
- Larbi, T.; Ouni, B.; Boukhachem, A.; Boubaker, K.; Amlouk, M. Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film. Mater. Res. Bull. 2014, 60, 457–466. [Google Scholar] [CrossRef]
- Adhikari, R.; Das, A.K.; Karmakar, D.; Rao, T.V.C.; Ghatak, J. Structure and magnetism of Fe-doped SnO2 nanoparticles. Phys. Rev. B 2008, 78, 024404. [Google Scholar] [CrossRef]
- Ouhaibi, A.; Ghamnia, M.; Dahamni, M.A.; Heresanu, V.; Fauquet, C.; Tonneau, D. The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J. Sci. Adv. Mater. Devices 2018, 3, 29–36. [Google Scholar] [CrossRef]
- Adav, A.; Jadhav, S.; Chougule, D.; Patil, P.; Chavan, U.; Kolekar, Y. Spray deposited Hausmannite Mn3O4 thin films using aqueous/organic solvent mixture for supercapacitor applications. Electrochim. Acta 2016, 206, 134–142. [Google Scholar] [CrossRef]
- Raj, A.M.E.; Victoria, S.G.; Jothy, V.B.; Ravidhas, C.; Wollschläger, J.; Suendorf, M.; Neumann, M.; Jayachandran, M.; Sanjeeviraja, C. XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl. Surf. Sci. 2010, 256, 2920–2926. [Google Scholar]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grubel, G.; Weller, H. Determination of nanocrystalsizes: Comparison of TEM; SAXS and XRD studies of highly monodisperse CoPt3 particles. Langmur 2005, 21, 1931–1936. [Google Scholar] [CrossRef]
- Tauc, J.; Menth, A. States in the gap. J. Non-Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Parthiban, S.; Gokulakrishnan, V.; Ramamurthi, K.; Elangovan, E.; Martins, R.; Fortunato, E.; Ganesan, R. High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications. Solar Energy Mater. Solar Cells 2009, 93, 92–97. [Google Scholar] [CrossRef]
- Sheikhshoaie, I.; Ramezanpour, S.; Khatamian, M. Synthesis and characterization of thallium doped Mn3O4 as superior sunlight photocatalysts. J. Mol. Liq. 2017, 238, 248–253. [Google Scholar] [CrossRef]
- Amara, M.; Larbi, T.; Labidi, A.; Karyaoui, M.; Ouni, B.; Amlouk, M. Microstructural, optical and ethanol sensing properties of sprayed Li-doped Mn3O4 thin films. Mater. Res. Bull. 2016, 75, 217–223. [Google Scholar] [CrossRef]
- Zhou, W.; Zhanga, L.; Ouyang, C.; Wu, J.; Huang, Z.; Xu, X.-F. Micro structural, electrical and optical properties of highly (2 2 0) oriented spinel Mn–Co–Ni–O film grown by radio frequency magnetron sputtering. Appl. Surf. Sci. 2014, 311, 443–447. [Google Scholar] [CrossRef]
- Kovendhan, M.; Joseph, D.P.; Manimuthu, P.; Sendil Kumar, A.; Karthick, S.N.; Sambasivam, S.; Vijayarangamuthu, K.; Kim, H.J.; Choi, B.C.; Asokan, K.; et al. Prototype electrochromic device and dye sensitized solar cell using spray deposited undoped and ‘Li’ doped V2O5 thin film electrodes. Curr. Appl. Phys. 2015, 15, 622–631. [Google Scholar] [CrossRef]
Samples | O (1s) Binding Energy (eV) | Mn (2p3/2) Binding Energy (eV) | Mn (2p1/2) Binding Energy (eV) |
---|---|---|---|
Pure MnO film | 529 | 640.4 | 652.4 |
3% Mg-doped film | 529.9 | 641.5 | 653.5 |
5–7% Mg-doped film | 529.5 | 641.0 | 653.0 |
9% Mg-doped film | 529.7 | 641.5 | 653.6 |
Sample | 2θ (°) | (hkl) | d (Å) | a = b (Å) | c (Å) | a = b (Å) in Literature | c (Å) in Literature |
---|---|---|---|---|---|---|---|
Pure MnO | 32.29 36.08 | 103 211 | 2.770 2.488 | 5.7643 | 9.4757 | 8.135 [30] | 9.28 [30] |
5.752 [31] | 9.47 [31] | ||||||
MnO (3% Mg) | 32.36 36.13 | 103 211 | 2.763 2.484 | 5.7565 | 9.4517 | – | |
MnO (5% Mg) | 32.29 36.07 | 103 211 | 2.770 2.487 | 5.7647 | 9.4766 | ||
MnO (7% Mg) | 32.65 36.39 | 103 211 | 2.740 2.466 | 5.7166 | 9.3677 | ||
MnO (9% Mg) | 32.53 36.31 | 103 211 | 2.751 2.472 | 5.7302 | 9.4041 |
Sample | 2θ (°) | θ (°) | d(211) (Å) | β (°) | D (nm) | δ (10−3) |
---|---|---|---|---|---|---|
Pure MnO | 36.08 | 18.04 | 2.488 | 0.3354 | 24.9075 | 1.6119 |
MnO (3% Mg) | 36.13 | 18.06 | 2.484 | 0.3088 | 27.0534 | 1.3663 |
MnO (5% Mg) | 36.07 | 18.03 | 2.487 | 0.2844 | 29.3722 | 1.1591 |
MnO (7% Mg) | 36.39 | 18.19 | 2.466 | 0.3624 | 23.0756 | 1.8779 |
MnO (9% Mg) | 36.31 | 18.15 | 2.472 | 0.3095 | 27.0081 | 1.3709 |
Sample | Eg (eV) |
---|---|
Pure MnO | 2.5 |
3% Mg-doped MnO | 1:9 |
5% Mg-doped MnO | 2.3 |
7% Mg-doped MnO | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahamni, M.A.; Ghamnia, M.; Naceri, S.E.; Fauquet, C.; Tonneau, D.; Pireaux, J.-J.; Bouadi, A. Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films. Coatings 2021, 11, 598. https://doi.org/10.3390/coatings11050598
Dahamni MA, Ghamnia M, Naceri SE, Fauquet C, Tonneau D, Pireaux J-J, Bouadi A. Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films. Coatings. 2021; 11(5):598. https://doi.org/10.3390/coatings11050598
Chicago/Turabian StyleDahamni, Mohamed Amine, Mostefa Ghamnia, Salah Eddine Naceri, Carole Fauquet, Didier Tonneau, Jean-Jacques Pireaux, and Abed Bouadi. 2021. "Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films" Coatings 11, no. 5: 598. https://doi.org/10.3390/coatings11050598
APA StyleDahamni, M. A., Ghamnia, M., Naceri, S. E., Fauquet, C., Tonneau, D., Pireaux, J. -J., & Bouadi, A. (2021). Spray Pyrolysis Synthesis of Pure and Mg-Doped Manganese Oxide Thin Films. Coatings, 11(5), 598. https://doi.org/10.3390/coatings11050598