Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers
Abstract
:1. Introduction
2. Extended MRI Model
3. Simulation and Discussion
4. Quantification of Measured Pulsed RF GDOES Depth Profile of Mo/B4C/Si Multilayer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bengtson, A.; Eklund, A.; Lundholm, M.; Saric, A. Further improvements in calibration techniques for depth profiling with glow discharge optical emission spectrometry. J. Anal. At. Spectrom. 1990, 5, 563–567. [Google Scholar] [CrossRef]
- Wilke, M.; Teichert, G.; Gemma, R.; Pundt, A.; Kirchheim, R.; Romanus, H.; Schaaf, P. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films. Thin Solid Films 2011, 520, 1660–1667. [Google Scholar] [CrossRef]
- Grigore, E.; Ruset, C.; Firdaouss, M.; Petersson, P.; Radovic, I.B.; Siketic, Z. Helium depth profile measurements within tungsten coatings by using Glow Discharge Optical Emission Spectrometry (GDOES). Surf. Coat. Technol. 2019, 376, 21–24. [Google Scholar] [CrossRef]
- Winchester, M.R.; Payling, R. Radio-frequency glow discharge spectrometry: A critical review. Spectrochim. Acta Part B: At. Spectrosc. 2004, 59, 607–666. [Google Scholar] [CrossRef]
- Hoffmann, V.; Dorka, R.; Wilken, L.; Hodoroaba, V.-D.; Wetzig, K. Present possibilities of thin-layer analysis by GDOES. Surf. Interface Anal. 2003, 35, 575–582. [Google Scholar] [CrossRef]
- Shimizu, K.; Habazaki, H.; Skeldon, P.; Thompson, G.E. Radiofrequency GDOES: A powerful technique for depth profiling analysis of thin films. Surf. Interface Anal. 2003, 35, 564–574. [Google Scholar] [CrossRef]
- Shimizu, K.; Habazaki, H.; Skeldon, P.; Thompson, G.E.; Wood, G.C. GDOES depth profiling analysis of a thin surface film on aluminium. Surf. Interface Anal. 1999, 27, 998–1002. [Google Scholar] [CrossRef]
- Shimizu, K.; Payling, R.; Habazaki, H.; Skeldon, P.; Thompson, G.E. Rf-GDOES depth profiling analysis of a monolayer of thiourea adsorbed on copper. J. Anal. At. Spectrom. 2004, 19, 692–695. [Google Scholar] [CrossRef]
- Liu, Y.; Jian, W.; Wang, J.; Hofmann, S.; Shimizu, K. Quantitative reconstruction of the GDOES sputter depth profile of a monomolecular layer structure of thiourea on copper. Appl. Surf. Sci. 2015, 331, 140–149. [Google Scholar] [CrossRef]
- Hofmann, S. Atomic mixing, surface roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure. Surf. Interface Anal. 1994, 21, 673–678. [Google Scholar] [CrossRef]
- Liu, Y.; Hofmann, S.; Wang, J.; Chakraborty, B. Quantitative reconstruction of Ta/Si multilayer depth profiles obtained by Time-of-Flight-Secondary-Ion-Mass-Spectrometry (ToF-SIMS) using Cs+ ion sputtering. Thin Solid Films 2015, 591, 60–65. [Google Scholar] [CrossRef]
- Hofmann, S. Ultimate depth resolution and profile reconstruction in sputter profiling with AES and SIMS. Surf. Interface Anal. 2000, 30, 228–236. [Google Scholar] [CrossRef]
- Liu, Y.; Hofmann, S.; Wang, J.Y. An analytical depth resolution function for the MRI model. Surf. Interface Anal. 2013, 45, 1659–1660. [Google Scholar] [CrossRef]
- Hofmann, S. Sputter depth profiling: Past, present, and future. Surf. Interface Anal. 2014, 46, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, S.; Han, Y.; Wang, J. Depth resolution and preferential sputtering in depth profiling of sharp interfaces. Appl. Surf. Sci. 2017, 410, 354–362. [Google Scholar] [CrossRef]
- Hofmann, S.; Lian, S.; Han, Y.; Deng, Q.; Wang, J. Correlation of depth resolution and preferential sputtering in depth profiles of thin layers by Secondary Ion Mass Spectrometry (SIMS). Thin Solid Films 2018, 662, 165–167. [Google Scholar] [CrossRef]
- Lian, S.; Lin, B.; Yan, X.; Wang, J.; Xu, C. Preferential sputtering and mass conservation in AES and SIMS depth profiling. Vacuum 2019, 160, 109–113. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, W.; Wang, J. A model for quantification of GDOES depth profiles. Vacuum 2015, 113, 5–10. [Google Scholar] [CrossRef]
- Nyabero, S.L.; Van De Kruijs, R.W.E.; Yakshin, A.E.; Zoethout, E.; Bijkerk, F. Thermally induced interface chemistry in Mo/B4C/Si/B4C multilayered films. J. Appl. Phys. 2012, 112, 54317. [Google Scholar] [CrossRef]
- Nedelcu, I.; Van De Kruijs, R.W.E.; Yakshin, A.E.; Bijkerk, F. Thermally enhanced interdiffusion in Mo/Si multilayers. J. Appl. Phys. 2008, 103, 83549. [Google Scholar] [CrossRef]
- Nedelcu, I.; Van De Kruijs, R.W.E.; Yakshin, A.E.; Bijkerk, F. Microstructure of Mo/Si multilayers with B4C diffusion barrier layers. Appl. Opt. 2009, 48, 155–160. [Google Scholar] [CrossRef]
- Bajt, S.; Alameda, J.B.; Barbee, T.W.; Clift, W.M.; Folta, J.A.; Kaufmann, B.B.; Spiller, E.A. Improved reflectance and stability of Mo-Si multilayers. Opt. Eng. 2002, 41, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Bungo, T.; Nagatomi, T.; Takai, Y. Dependence of depth resolution on primary energy of low-energy Ar+ Ions (100–1000 eV) in AES sputter depth profiling of GaAs/AlAs superlattice. Surf. Interface Anal. 2006, 38, 1598–1603. [Google Scholar] [CrossRef]
- Gilbert, J.B.; Luo, M.; Shelton, C.K.; Rubner, M.F.; Cohen, R.E.; Epps, T.H.I. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling. ACS Nano 2015, 9, 512–520. [Google Scholar] [CrossRef] [Green Version]
- Yunin, P.; Drozdov, Y.; Drozdov, M.; Khrykin, O.; Shashkin, V. Quantitative SIMS depth profiling of Al in AlGaN/AlN/GaN HEMT structures with nanometer-thin layers. Surf. Interface Anal. 2016, 49, 117–121. [Google Scholar] [CrossRef]
- Hofmann, S. Auger- and X-Ray Photoelectron Spectroscopy in Materials Science; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 297–408. [Google Scholar]
- Lian, S.; Yang, H.; Terblans, J.J.; Swart, H.C.; Wang, J.; Xu, C. Preferential sputtering in quantitative sputter depth profiling of multi-element thin films. Thin Solid Films 2021, 721, 138545. [Google Scholar] [CrossRef]
- Hofmann, S. Quantitative depth profiling in surface analysis: A review. Surf. Interface Anal. 1980, 2, 148–160. [Google Scholar] [CrossRef]
- Hofmann, S.; Zalar, A. Auger electron spectroscopy depth profiling of Ni/Cr multilayers by sputtering with N2+ ions. Thin Solid Films 1979, 60, 201–211. [Google Scholar] [CrossRef]
- Ber, B.; Bábor, P.; Brunkov, P.; Chapon, P.; Drozdov, M.; Duda, R.; Kazantsev, D.; Polkovnikov, V.; Yunin, P.; Tolstogouzov, A. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques. Thin Solid Films 2013, 540, 96–105. [Google Scholar] [CrossRef]
- Seah, M.P.; Mulcahy, C.P.A.; Biswas, S. Nonlinearities in depth profiling nanometer layers. J. Vac. Sci. Technol. B 2010, 28, 1215–1221. [Google Scholar] [CrossRef]
- Hofmann, S.; Yang, H.; Kovač, J.; Ekar, J.; Song, Y.; Wang, J. Artifacts in multilayer depth profiling: Origin and quantification of a double peak layer profile of Ag in ToF-SIMS depth profiles of an Ag/Ni multilayer. Mater. Charact. 2021, 171, 110774. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- The stopping and range of ions in matter. Available online: http://www.SRIM.org (accessed on 4 February 2021).
- Seah, M. Pure element sputtering yields using 500–1000 eV argon ions. Thin Solid Films 1981, 81, 279–287. [Google Scholar] [CrossRef]
Figure | qA (nm/s) | qB (nm/s) | qC (nm/s) | qD (nm/s) | w (nm) | σ (nm) | dA (nm) | dBC (nm) | dD (nm) |
---|---|---|---|---|---|---|---|---|---|
Figure 1 | 8 | change | qC = qB | 8 | 2 | 2 | 5 | 0.5 | 5 |
Figure 2 | 8 | 3 | 3 | 8 | 2 | 2 | 5 | change | 5.5-dBC |
Figure 3 | 8 | 3 | 3 | change | 2 | 2 | 5 | 0.5 | 5 |
Sample | 60 × Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) | 60 × Mo (3.5 nm)/Si (3.5 nm) |
---|---|---|
Max. value of Mo peak | 19.6 | 22.3 |
Max. value of Si peak | 2.5 | 2.9 |
Total sputtering time | 49 s | 44 s |
No. of period | Mo (nm) | B4C (nm) | Si (nm) |
---|---|---|---|
1 | 3.00 | 0.30 | 3.90 |
2 | 2.90 | 0.30 | 3.98 |
3 | 2.90 | 0.30 | 3.98 |
4 | 2.90 | 0.30 | 3.80 |
5 | 3.00 | 0.30 | 3.82 |
6 | 3.00 | 0.29 | 3.90 |
7 | 3.00 | 0.30 | 3.80 |
8 | 3.00 | 0.29 | 3.70 |
9 | 3.00 | 0.30 | 3.70 |
10 | 3.00 | 0.30 | 3.70 |
11 | 3.00 | 0.30 | 3.70 |
12 | 3.00 | 0.30 | 3.70 |
13 | 3.00 | 0.30 | 3.70 |
14 | 3.00 | 0.30 | 3.70 |
15 | 3.00 | 0.30 | 3.70 |
16 | 3.00 | 0.30 | 3.70 |
17 | 3.00 | 0.30 | 3.70 |
18 | 2.80 | 0.30 | 3.60 |
19 | 2.80 | 0.30 | 3.60 |
20 | 3.00 | 0.30 | 3.60 |
21 | 3.00 | 0.32 | 3.60 |
22 | 3.00 | 0.32 | 3.50 |
23 | 3.00 | 0.30 | 3.70 |
24 | 3.00 | 0.30 | 3.70 |
25 | 3.00 | 0.30 | 3.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Lian, S.; Chapon, P.; Song, Y.; Wang, J.; Xu, C. Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers. Coatings 2021, 11, 612. https://doi.org/10.3390/coatings11060612
Yang H, Lian S, Chapon P, Song Y, Wang J, Xu C. Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers. Coatings. 2021; 11(6):612. https://doi.org/10.3390/coatings11060612
Chicago/Turabian StyleYang, Hao, Songyou Lian, Patrick Chapon, Yibing Song, Jiangyong Wang, and Congkang Xu. 2021. "Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers" Coatings 11, no. 6: 612. https://doi.org/10.3390/coatings11060612
APA StyleYang, H., Lian, S., Chapon, P., Song, Y., Wang, J., & Xu, C. (2021). Quantification of High Resolution Pulsed RF GDOES Depth Profiles for Mo/B4C/Si Nano-Multilayers. Coatings, 11(6), 612. https://doi.org/10.3390/coatings11060612