Multivariate Quadratic Nonlinear Regression Model of the Ultimate Pull-Out Load of Electrohydraulic Expansion Joints Based on Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrohydraulic Expansion Joining
2.2. Materials and Specimen Preparation
2.3. Joint Quality Evaluation
2.4. Experiment Design
2.5. Data Analysis
3. Results and Discussion
3.1. Mechanical Properties of the Joints
3.2. Analysis of Variance Analysis and Mathematical Model
3.3. Effect of Single Factor on the Response
3.4. Interaction Effect of Parameters on Response
3.5. Parameter Optimization and Validation
4. Conclusions
- (1)
- The results of the multivariate quadratic nonlinear regression model of the ultimate pull-out load of electrohydraulic expansion joints were in good agreement with the experimental results, which indicated that the model could accurately predict the ultimate pull-out load.
- (2)
- The discharge voltage, wire length, and wire diameter had a significant effect on the ultimate pull-out load. The discharge voltage had the most significant effect. The interaction between the discharge voltage and the wire diameter had a significant effect on the ultimate pull-out load.
- (3)
- The optimal parameter combination was obtained when the discharge voltage was 6 kV, wire length was 10 mm, and the wire diameter was 0.833 mm, the ultimate pull-out load reached its peak, which was 18.296 kN. This research created an experimental database for the practical application and further promotion of electrohydraulic expansion joining process. It also provided guidance for the choice of the process parameters in real applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Q.; Zhang, T.; Zhu, C.; Bi, Y. Effect of riveting angle and direction on fatigue performance of riveted lap joints. Coatings 2021, 11, 236. [Google Scholar] [CrossRef]
- Jiang, H.; Zeng, C.C.; Li, G.Y.; Cui, J.J. Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint. Compos. Struct. 2021, 257, 113162. [Google Scholar] [CrossRef]
- Zhu, C.C.; Sun, L.Q.; Gao, W.L.; Li, G.Y.; Cui, J.J. The effect of temperature on microstructure and mechanical properties of Al/Mg lap joints manufactured by magnetic pulse welding. J. Mater. Res. Technol.-JMRT 2019, 8, 3270–3280. [Google Scholar] [CrossRef]
- Weddeling, C.; Woodward, S.T.; Marre, M.; Nellesen, J.; Psyk, V.; Tekkaya, A.E.; Tillmann, W. Influence of groove characteristics on strength of form-fit joints. J. Mater. Process. Technol. 2011, 211, 925–935. [Google Scholar] [CrossRef]
- Duan, L.M.; Jiang, H.; Zhang, X.; Li, G.Y.; Cui, J.J. Experimental investigations of electromagnetic punching process in CFRP laminate. Mater. Manuf. Process. 2021, 36, 223–234. [Google Scholar] [CrossRef]
- Wang, S.L.; Zhou, B.B.; Zhang, X.; Sun, T.; Li, G.Y.; Cui, J.J. Mechanical properties and interfacial microstructures of magnetic pulse welding joints with aluminum to zinc-coated steel. Mater. Sci. Eng. A 2020, 788, 139425. [Google Scholar] [CrossRef]
- Marre, M.; Brosius, A.; Tekkaya, A.E. Joining by compression and expansion of (none-) reinforced profiles. Adv. Mater. Res. Flex. Manuf. Lightweight Fram. Struct. Phase II Integr. 2008, 43, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Barnes, T.A.; Pashby, I.R. Joining techniques for aluminum spaceframes used in automobiles, Part I—Solid and liquid phase welding. Mater. Manuf. Process. 1998, 99, 62–71. [Google Scholar] [CrossRef]
- Mori, K.; Bay, N.; Fratini, L.; Fabrizio, M.; Tekkaya, A.E. Joining by plastic deformation. CIRP Ann.-Manuf. Technol. 2013, 62, 673–694. [Google Scholar] [CrossRef]
- Henriksen, J.; Nordhagen, H.O.; Hoang, H.N. Hansen, M.R.; Thrane, F.C. Numerical and experimental verification of new method for connecting pipe to flange by cold forming. J. Mater. Process. Technol. 2015, 220, 215–223. [Google Scholar] [CrossRef]
- Marre, M.; Rautenberg, J.; Tekkaya, A.E.; Zabel, A.; Biermann, D.; Wojciechowski, J.; Przybylski, W. An experimental study on the groove design for joints produced by hydraulic expansion considering axial or torque load. Mater. Manuf. Process. 2012, 27, 545–555. [Google Scholar] [CrossRef]
- Shirgaokar, M.; Cho, H.; Ngaile, G.; Altan, T.; Yu, J.H.; Balconi, J.; Rentfrow, R.; Worrell, W.J. Optimization of mechanical crimping to assemble tubular components. J. Mater. Process. Technol. 2004, 146, 35–43. [Google Scholar] [CrossRef]
- Cho, J.R.; Song, J.I. Swaging process of power steering hose: Its finite element analysis considering the stress relaxation. J. Mater. Process. Technol. 2007, 187–188, 497–501. [Google Scholar] [CrossRef]
- Shirgaokar, M.; Ngaile, G.; Altan, T.; Yu, J.H.; Balconi, J.; Rentfrow, R.; Worrell, W.J. Hydraulic crimping: Application to the assembly of tubular components. J. Mater. Process. Technol. 2004, 146, 44–51. [Google Scholar] [CrossRef]
- Li, G.Y.; Deng, H.K.; Mao, Y.F.; Zhang, X.; Cui, J.J. Study on AA5182 aluminum sheet formability using combined quasi-static-dynamic tensile processes. J. Mater. Process. Technol. 2018, 255, 373–386. [Google Scholar] [CrossRef]
- Psyk, V.; Risch, D.; Kinsey, B.L.; Tekkaya, A.E.; Kleiner, M. Electromagnetic forming—A review. J. Mater. Process. Technol. 2011, 211, 787–829. [Google Scholar] [CrossRef]
- Weddeling, C.; Demir, O.K.; Haupt, P.; Tekkaya, A.E. Analytical methodology for the process design of electromagnetic crimping. J. Mater. Process. Technol. 2015, 222, 163–180. [Google Scholar] [CrossRef]
- Cai, D.; Liang, J.; Ou, H.; Li, G.Y.; Cui, J.J. Mechanical properties and joining mechanism of electrohydraulic expansion joints for 6063 aluminum alloy/304 stainless steel thin-walled pipes. Thin-Walled Struct. 2021, 161, 107427. [Google Scholar] [CrossRef]
- Golovashchenko, S.F.; Gillard, A.J.; Mamutov, A.V.; Bonnen, J.F.; Tang, Z.J. Electrohydraulic trimming of advanced and ultra high strength steels. J. Mater. Process. Technol. 2014, 214, 1027–1043. [Google Scholar] [CrossRef]
- Liu, X.; Gu, W.B.; Liu, J.Q.; Xu, J.L.; Hu, Y.H.; Hang, Y.M. Dynamic response of cylindrical explosion containment vessels subjected to internal blast loading. Int. J. Impact Eng. 2019, 135, 103389. [Google Scholar] [CrossRef]
- Zohoor, M.; Mousavi, S.M. Evaluation and optimization of effective parameters in electrohydraulic forming process. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–17. [Google Scholar] [CrossRef]
- Jiang, H.; Liao, Y.X.; Gao, S.; Li, G.Y.; Cui, J.J. Comparative study on joining quality of electromagnetic driven self-piecing riveting, adhesive and hybrid joints for Al/steel structure. Thin-Walled Struct. 2021, 164, 107903. [Google Scholar] [CrossRef]
- Cui, J.J.; Li, Y.; Liu, Q.X.X.; Zhang, X.; Xu, Z.D.; Li, G.Y. Joining of tubular carbon fiber-reinforced plastic/aluminum by magnetic pulse welding. J. Mater. Process. Technol. 2019, 264, 273–282. [Google Scholar] [CrossRef]
- Zou, S.Z.; Wang, H.; Wang, X.J.; Zhou, S.; Li, X.; Feng, Y.Z. Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion. Appl. Energy 2016, 179, 191–202. [Google Scholar] [CrossRef]
- Varesio, E.; Gauvrit, J.Y.; Longeray, R.; Lantéri, P.; Veuthey, J.L. Central composite design in the chiral analysis of amphetamines by capillary electrophoresis. Electrophoresis 1997, 18, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Bas, D.; Boyacı, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar]
- Auricchio, F.; Balduzzi, G.; Khoshgoftar, M.J.; Rahimi, G.; Sacco, E. Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger–Reissner principle. Compos. Struct. 2014, 118, 622–633. [Google Scholar] [CrossRef]
- Yao, W.B.; Zhou, H.B.; Han, R.Y.; Zhang, Y.M.; Zhao, Z.; Xu, Q.F.; Qiu, A.C. An empirical approach for parameters estimation of underwater electrical wire explosion. Phys. Plasmas 2019, 26, 093502. [Google Scholar] [CrossRef]
- Virozub, A.; Gurovich, V.T.; Yanuka, D.; Antonov, O.; Krasik, Y.E. Addressing optimal underwater electrical explosion of a wire. Phys. Plasmas 2016, 23, 092708. [Google Scholar] [CrossRef]
- Li, L.X.; Qian, D.; Zou, X.B.; Wang, X.X. Effect of deposition energy on underwater electrical wire explosion. IEEE Trans. Plasma Sci. 2018, 46, 3444–3449. [Google Scholar] [CrossRef]
- Grinenko, A.; Krasik, Y.E.; Efimov, S.; Fedotov, A.; Gurovich, V.T.; Oreshkin, V.I. Nanosecond time scale, high power electrical wire explosion in water. Phys. Plasmas 2006, 13, 042701. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Q.G.; Zhang, J.; Zhao, J.P.; Pang, L.; Ren, B.Z. Effect of circuit parameters and wire properties on exploding a copper wire in water. IEEE Trans. Plasma Sci. 2011, 39, 1606–1612. [Google Scholar] [CrossRef]
- Suhara, T.; Fukuda, S. Experimental determination of optimum condition for wire explosion in water and PMMA. Proc. SPIE 1979, 189, 321–326. [Google Scholar]
Variable | Numbering | Coded Values | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Discharge voltage | A | 4 | 5 | 6 |
Wire length | B | 10 | 15 | 20 |
Wire diameter | C | 0.6 | 0.8 | 1.0 |
Samples | Coded Value | Real Value | ||||
---|---|---|---|---|---|---|
A | B | C | Discharge Voltage (kV) | Wire Length (mm) | Wire Diameter (mm) | |
1 | −1 | −1 | −1 | 4 | 10 | 0.6 |
2 | 0 | −1 | 0 | 5 | 10 | 0.8 |
3 | 0 | 0 | −1 | 5 | 15 | 0.6 |
4 | −1 | 0 | 0 | 4 | 15 | 0.8 |
5 | 0 | 0 | 1 | 5 | 15 | 1.0 |
6 | 1 | 1 | −1 | 6 | 20 | 0.6 |
7 | 0 | 0 | 0 | 5 | 15 | 0.8 |
8 | −1 | 1 | 1 | 4 | 20 | 1 |
9 | −1 | −1 | 1 | 4 | 10 | 1 |
10 | 0 | 1 | 0 | 5 | 20 | 0.8 |
11 | 1 | 1 | 1 | 6 | 20 | 1 |
12 | 0 | 0 | 0 | 5 | 15 | 0.8 |
13 | 0 | 0 | 0 | 5 | 15 | 0.8 |
14 | 0 | 0 | 0 | 5 | 15 | 0.8 |
15 | 1 | −1 | −1 | 6 | 10 | 0.6 |
16 | −1 | 1 | −1 | 4 | 20 | 0.6 |
17 | 1 | 0 | 0 | 6 | 15 | 0.8 |
18 | 1 | −1 | 1 | 6 | 10 | 1 |
19 | 0 | 0 | 0 | 5 | 15 | 0.8 |
20 | 0 | 0 | 0 | 5 | 15 | 0.8 |
Samples | Ultimate Pull-Out Load (kN) | Samples | Ultimate Pull-Out Load (kN) | ||
---|---|---|---|---|---|
Actual | Predicted | Actual | Predicted | ||
1 | 11.09 | 11.47 | 11 | 12.55 | 12.33 |
2 | 15.61 | 15.28 | 12 | 13.45 | 13.67 |
3 | 13.76 | 12.22 | 13 | 13.45 | 13.67 |
4 | 9.95 | 9.62 | 14 | 13.45 | 13.67 |
5 | 9.52 | 10.40 | 15 | 14.71 | 15.09 |
6 | 10.39 | 10.77 | 16 | 6.77 | 7.15 |
7 | 13.45 | 13.67 | 17 | 16.95 | 16.62 |
8 | 2.17 | 1.95 | 18 | 16.87 | 16.65 |
9 | 6.49 | 6.27 | 19 | 13.45 | 13.67 |
10 | 11.29 | 10.96 | 20 | 13.45 | 13.67 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 248.52 | 9 | 27.61 | 59.47 | <0.0001 | Significant |
A-A | 122.50 | 1 | 122.50 | 263.83 | <0.0001 | |
B-B | 46.66 | 1 | 46.66 | 5.94 | <0.0001 | |
C-C | 8.32 | 1 | 8.32 | 17.91 | 0.0017 | |
AB | 0.00 | 1 | 0.00 | 0.00 | 1.00 | |
AC | 22.85 | 1 | 22.85 | 49.21 | <0.0001 | |
BC | 0.00 | 1 | 0.00 | 0.00 | 1.00 | |
A2 | 0.83 | 1 | 0.83 | 1.79 | 0.2111 | |
B2 | 0.83 | 1 | 0.83 | 1.79 | 0.2111 | |
C2 | 51.44 | 1 | 51.44 | 15.68 | 0.0027 | |
Residual | 4.64 | 10 | 0.46 | |||
Lack of fit | 4.64 | 5 | 0.93 | |||
Pure error | 0 | 5 | 0 | |||
Cor total | 253.16 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, D.; Jin, C.; Liang, J.; Li, G.; Cui, J. Multivariate Quadratic Nonlinear Regression Model of the Ultimate Pull-Out Load of Electrohydraulic Expansion Joints Based on Response Surface Methodology. Coatings 2021, 11, 689. https://doi.org/10.3390/coatings11060689
Cai D, Jin C, Liang J, Li G, Cui J. Multivariate Quadratic Nonlinear Regression Model of the Ultimate Pull-Out Load of Electrohydraulic Expansion Joints Based on Response Surface Methodology. Coatings. 2021; 11(6):689. https://doi.org/10.3390/coatings11060689
Chicago/Turabian StyleCai, Da, Chenyu Jin, Jie Liang, Guangyao Li, and Junjia Cui. 2021. "Multivariate Quadratic Nonlinear Regression Model of the Ultimate Pull-Out Load of Electrohydraulic Expansion Joints Based on Response Surface Methodology" Coatings 11, no. 6: 689. https://doi.org/10.3390/coatings11060689
APA StyleCai, D., Jin, C., Liang, J., Li, G., & Cui, J. (2021). Multivariate Quadratic Nonlinear Regression Model of the Ultimate Pull-Out Load of Electrohydraulic Expansion Joints Based on Response Surface Methodology. Coatings, 11(6), 689. https://doi.org/10.3390/coatings11060689