Mechanical Properties and Diffusion Barrier Performance of CrWN Coatings Fabricated through Hybrid HiPIMS/RFMS
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. CrWN Coatings Co-Sputtered Using Various Nitrogen Flow Rates
3.2. Diffusion Barriers
4. Conclusions
- The hybrid HiPIMS/RFMS process formed CrWN coatings with a dense structure and a smooth surface.
- The mechanical properties, hardness and Young’s modulus, of the CrWN coatings were affected by the crystalline phase and residual stress. The Cr51W2N47 coatings exhibited a granular structure, revealing enhanced mechanical properties (H: 19.7 GPa, E: 296 GPa) and reduced surface roughness values (Ra: 2.6 nm, Rq: 3.3 nm), accompanied by a compressive residual stress of −0.53 GPa.
- The tribological characteristics, wear resistance, and scratch behavior of the CrWN coatings were affected by residual stress. The Cr51W2N47 coatings with a compressive residual stress exhibited superior tribological characteristics compared to those CrWN coatings revealing tensile residual stresses.
- The application of CrWN films as a diffusion barrier on Cu metallization was practiced by annealing up to 650 °C in a vacuum for 1 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, C.S.; Gall, N.; Hellgren, N.; Patscheider, J.; Petrov, I.; Greene, J.E. Vacancy hardening in single-crystal TiNx (001) layers. J. Appl. Phys. 2003, 93, 6025–6028. [Google Scholar] [CrossRef] [Green Version]
- Martinez, E.; Sanjinés, R.; Banakh, O.; Lévy, F. Electrical, optical and mechanical properties of sputtered CrNy and Cr1−xSixN1.02 thin films. Thin Solid Films 2004, 447, 332–336. [Google Scholar] [CrossRef]
- Kong, J.Z.; Xu, P.; Cao, Y.Q.; Li, A.D.; Wang, Q.Z.; Zhou, F. Improved corrosion protection of CrN hard coating on steel sealed with TiOxNy–TiN composite layers. Surf. Coat. Technol. 2020, 381, 125108. [Google Scholar] [CrossRef]
- Liu, X.; Ma, G.J.; Sun, G.; Duan, Y.P.; Liu, S.H. Effect of deposition and annealing temperature on mechanical properties of TaN film. Appl. Surf. Sci. 2011, 258, 1033–1037. [Google Scholar] [CrossRef]
- Liu, K.Y.; Lee, J.W.; Wu, F.B. Fabrication and tribological behavior of sputtering TaN coatings. Surf. Coat. Technol. 2014, 259, 123–128. [Google Scholar] [CrossRef]
- Hones, P.; Martin, N.; Regula, M.; Lévy, F. Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. J. Phys. D Appl. Phys. 2003, 36, 1023–1029. [Google Scholar] [CrossRef]
- Lou, B.S.; Moirangthem, I.; Lee, J.W. Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system: Effects of nitrogen flow rate. Surf. Coat. Technol. 2020, 393, 125743. [Google Scholar] [CrossRef]
- Zhou, M.; Makino, Y.; Nose, M.; Nogi, K. Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering. Thin Solid Films 1999, 339, 203–208. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Filip, P.; Debessai, M. Characterization of tantalum zirconium nitride sputter-deposited nanocrystalline coatings. Surf. Coat. Technol. 2004, 187, 177–184. [Google Scholar] [CrossRef]
- Chang, L.C.; Chang, C.Y.; Chen, Y.I. Mechanical properties and oxidation resistance of reactively sputtered Ta1–xZrxNy thin films. Surf. Coat. Technol. 2015, 280, 27–36. [Google Scholar] [CrossRef]
- Hones, P.; Consiglio, R.; Randall, N.; Lévy, F. Mechanical properties of hard chromium tungsten nitride coatings. Surf. Coat. Technol. 2000, 125, 179–184. [Google Scholar] [CrossRef]
- Wu, F.B.; Tien, S.K.; Duh, J.G. Manufacture, microstructure and mechanical properties of CrWN and CrN/WN nanolayered coatings. Surf. Coat. Technol. 2005, 200, 1514–1518. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.H.; Su, Y.L.; Kao, W.H.; Cheng, K.W. Evaluation on wear behavior of Cr–Ag–N and Cr–W–N PVD nanocomposite coatings using two different types of tribometer. Surf. Coat. Technol. 2006, 201, 2520–2526. [Google Scholar] [CrossRef]
- Wu, W.Y.; Wu, C.H.; Xiao, B.H.; Yang, T.X.; Lin, S.Y.; Chen, P.H.; Chang, C.L. Microstructure, mechanical and tribological properties of CrWN films deposited by DC magnetron sputtering. Vacuum 2013, 87, 209–212. [Google Scholar] [CrossRef]
- Chang, L.C.; Zheng, Y.Z.; Gao, Y.X.; Chen, Y.I. Mechanical properties and oxidation resistance of sputtered Cr–W–N coatings. Surf. Coat. Technol. 2017, 320, 196–200. [Google Scholar] [CrossRef]
- Lin, C.H.; Duh, J.G.; Yau, B.S. Processing of chromium tungsten nitride hard coatings for glass molding. Surf. Coat. Technol. 2006, 201, 1316–1322. [Google Scholar] [CrossRef]
- Lin, T.N.; Han, S.; Weng, K.W.; Lee, C.T. Investigation on the structural and mechanical properties of anti-sticking sputtered tungsten chromium nitride films. Thin Solid Films 2013, 529, 333–337. [Google Scholar] [CrossRef]
- Chen, Y.I.; Cheng, Y.R.; Chang, L.C.; Lee, J.W. Chemical inertness of Cr–W–N coatings in glass molding. Thin Solid Films 2015, 593, 102–109. [Google Scholar] [CrossRef]
- Huang, A.; Xie, Z.; Li, K.; Chen, Q.; Chen, Y.; Gong, F. Thermal stability of CrWN glass molding coatings after vacuum annealing. Coatings 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Nitta, T.; Ohmi, T.; Hoshi, T.; Sakai, S.; Sakaibara, K.; Imai, S.; Shibata, T. Evaluating the large electromigration resistance of copper interconnects employing a newly developed accelerated life-test method. J. Electrochem. Soc. 1993, 140, 1131–1137. [Google Scholar] [CrossRef]
- McBrayer, J.D.; Swanson, R.M.; Sigmon, T.W. Diffusion of Metals in Silicon Dioxide. J. Electrochem. Soc. 1986, 133, 1242–1246. [Google Scholar] [CrossRef]
- Istratov, A.A.; Flink, C.; Hieslmair, H.; Weber, E.R. Intrinsic diffusion coefficient of interstitial copper in silicon. Phys. Rev. Lett. 1998, 81, 1243–1246. [Google Scholar] [CrossRef]
- Ono, H.; Nakano, T.; Ohta, T. Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M = Cr, Ti, Nb, Mo, Ta, W). Appl. Phys. Lett. 1994, 64, 1511–1513. [Google Scholar] [CrossRef]
- Shang, J.; Hao, J.X.; Hang, T.; Li, M. Diffusion barrier effect of Ta/Ti bilayer in organic dielectric/Cu interconnects. Thin Solid Films 2018, 653, 113–118. [Google Scholar] [CrossRef]
- Wang, H.W.; Chiou, B.S. Barrier layer effect of titanium-tungsten on the electromigration in sputtered copper films on polyimide. J. Mater. Sci. Mater. Electron. 2000, 11, 17–24. [Google Scholar] [CrossRef]
- Fugger, M.; Plappert, M.; Schäffer, C.; Humbel, O.; Hutter, H.; Danninger, H.; Nowottnick, M. Comparison of WTi and WTi(N) as diffusion barriers for Al and Cu metallization on Si with respect to thermal stability and diffusion behavior of Ti. Microelectron. Reliab. 2014, 54, 2487–2493. [Google Scholar] [CrossRef]
- Takeyama, M.B.; Sato, M.; Aoyagi, E.; Noya, A. Preparation of ultrathin TiNx films by radical assisted low temperature deposition and their barrier properties against Cu diffusion. Vacuum 2016, 126, 10–15. [Google Scholar] [CrossRef]
- Chen, S.F.; Wang, S.J.; Yang, T.H.; Yang, Z.D.; Bor, H.Y.; Wei, C.N. Effect of nitrogen flow rate on TaN diffusion barrier layer deposited between a Cu layer and a Si-based substrate. Ceram. Int. 2017, 43, 12505–12510. [Google Scholar] [CrossRef]
- Kim, J.B.; Nandi, D.K.; Kim, T.H.; Jang, Y.; Bae, J.S.; Hong, T.E.; Kim, S.H. Atomic layer deposition of WNx thin films using a F-free tungsten metalorganic precursor and NH3 plasma as a Cu-diffusion barrier. Thin Solid Films 2019, 685, 393–401. [Google Scholar] [CrossRef]
- Suh, B.S.; Lee, Y.J.; Hwang, J.S.; Park, C.O. Properties of reactively sputtered WNx as Cu diffusion barrier. Thin Solid Films 1999, 348, 299–303. [Google Scholar] [CrossRef]
- Wojcik, H.; Kaltofen, R.; Merkel, U.; Krien, C.; Strehle, S.; Gluch, J.; Knaut, M.; Wenzel, C.; Preusse, A.; Bartha, J.W.; et al. Electrical Evaluation of Ru–W(–N), Ru–Ta(–N) and Ru–Mn films as Cu diffusion barriers. Microelectron. Eng. 2012, 92, 71–75. [Google Scholar] [CrossRef]
- Wang, Q.X.; Liang, S.H.; Wang, X.H.; Fan, Z.K. Diffusion barrier performance of amorphous W–Ti–N films in Cu metallization. Vacuum 2010, 84, 1270–1274. [Google Scholar]
- Lee, J.; Duh, J.G. Structural evolution of Zr–Cu–Ni–Al–N thin film metallic glass and its diffusion barrier performance in Cu-Si interconnect at elevated temperature. Vacuum 2017, 142, 81–86. [Google Scholar] [CrossRef]
- Hsiao, Y.T.; Tung, C.H.; Lin, S.J.; Yeh, J.W.; Chang, S.Y. Thermodynamic route for self-forming 1.5 nm V–Nb–Mo–Ta–W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy. Acta Mater. 2020, 199, 107–115. [Google Scholar] [CrossRef]
- Chang, J.C.; Tu, S.L.; Chen, M.C. Sputtered Cr and reactively sputtered CrNx serving as barrier layers against copper diffusion. J. Electrochem. Soc. 1998, 145, 4290–4296. [Google Scholar] [CrossRef]
- Marulanda, D.M.; Lousa, A.; Martinez-de-Olcoz, L.; Olaya, J.J. Microstructure characterization of nano-structured Cr/Cr2N multilayer films produced through radio frequency magnetron sputtering. Thin Solid Films 2014, 550, 272–277. [Google Scholar] [CrossRef]
- Lu, F.H.; Chen, H.Y. Phase changes of CrN films annealed at high temperature under controlled atmosphere. Thin Solid Films 2001, 398, 368–373. [Google Scholar] [CrossRef]
- Kouznetsov, V.; Macák, K.; Schneider, J.M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1990, 122, 290–293. [Google Scholar] [CrossRef]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 2006, 513, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, J.T.; Brenning, N.; Lundin, D.; Helmersson, U. High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. A Vac. Surf. Films 2012, 30, 030801. [Google Scholar] [CrossRef] [Green Version]
- Ehiasarian, A.P. High-power impulse magnetron sputtering and its applications. Pure Appl. Chem. 2010, 82, 1247–1258. [Google Scholar] [CrossRef]
- Sarakinos, K.; Alami, J.; Konstantinidis, S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol. 2010, 204, 1661–1684. [Google Scholar] [CrossRef]
- Purandare, Y.P.; Ehiasarian, A.P.; Hovsepian, P.E. Structure and properties of ZrN coatings deposited by high power impulse magnetron sputtering technology. J. Vac. Sci. Technol. A 2011, 29, 011004. [Google Scholar] [CrossRef]
- Ehiasarian, A.P.; Münz, W.-D.; Hultman, L.; Helmersson, U.; Petrov, I. High power pulsed magnetron sputtered CrNx films. Surf. Coat. Technol. 2003, 163, 267–272. [Google Scholar] [CrossRef]
- Chang, L.C.; Chang, C.Y.; You, Y.W. Ta–Zr–N thin films fabricated through HIPIMS/RFMS co-sputtering. Coatings 2017, 7, 189. [Google Scholar] [CrossRef]
- Chang, L.C.; Zheng, Y.Z.; Chen, Y.I. Mechanical properties of Zr–Si–N films fabricated through HiPIMS/RFMS co-sputtering. Coatings 2018, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Janssen, G.C.A.M.; Abdalla, M.M.; van Keulen, F.; Pujada, B.R.; van Venrooy, B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: New York, NY, USA, 1995. [Google Scholar]
- Lin, J.; Sproul, W.D.; Moore, J.J.; Lee, S.; Myers, S. High rate deposition of thick CrN and Cr2N coatings using modulated pulse power (MPP) magnetron sputtering. Surf. Coat. Technol. 2011, 205, 3226–3234. [Google Scholar] [CrossRef]
- Bielawski, M. Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 2006, 200, 3987–3995. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X.; Wu, X.; Fang, F.; Jiang, J. Effect of substrate bias and temperature on magnetron sputtered CrSiN films. Appl. Surf. Sci. 2011, 257, 1850–1853. [Google Scholar] [CrossRef]
- Hirota, K.; Takano, Y.; Yoshinaka, M.; Yamaguchi, O. Hot isostatic pressing of chromium nitrides (Cr2N and CrN) prepared by self-propagating high-temperature synthesis. J. Am. Ceram. Soc. 2001, 84, 2120–2122. [Google Scholar] [CrossRef]
- Hones, P.; Sanjines, R.; Lévy, F. Characterization of sputter-deposited chromium nitride thin films for hard coatings. Surf. Coat. Technol. 1997, 94, 398–402. [Google Scholar] [CrossRef]
- Wei, G.; Rar, A.; Barnard, J.A. Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0 ≤ x ≤ 1) thin films. Thin Solid Films 2001, 398, 460–464. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Bondar, O.V.; Postolnyi, B.O.; Zaleski, K.; Coy, E.; Jurga, S.; Lisovenko, M.O.; Konarski, P.; Rebouta, L.; et al. Superhard CrN/MoN coatings with multilayer architecture. Mater. Des. 2018, 153, 47–59. [Google Scholar] [CrossRef]
- Tsui, T.Y.; Pharr, G.M.; Oliver, W.C.; Bhatia, C.S.; White, R.L.; Anders, S.; Anders, A.; Brown, I.G. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Mater. Res. Soc. Symp. Proc. 1995, 383, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, Z.; Li, J.; Huang, J.; Kong, J.; Wu, Q.; Xiong, D. Effects of Hf addition on the structure, mechanical and tribological properties of CrN film. Surf. Coat. Technol. 2020, 397, 126067. [Google Scholar] [CrossRef]
- Chen, X.; Du, Y.; Chung, Y.W. Commentary on using H/E and H3/E2 as proxies for fracture toughness of hard coatings. Thin Solid Films 2019, 688, 137265. [Google Scholar] [CrossRef]
- Odén, M.; Ericsson, C.; Håkansson, G.; Ljungcrantz, H. Microstructure and mechanical behavior of arc-evaporated Cr–N coatings. Surf. Coat. Technol. 1999, 114, 39–51. [Google Scholar] [CrossRef]
- Meng, Y.; Song, Z.X.; Li, Y.H.; Qian, D.; Hu, W.; Xu, K.W. Thermal stability of ultra thin Zr–B-–N films as diffusion barrier between Cu and Si. Appl. Surf. Sci. 2020, 527, 146810. [Google Scholar] [CrossRef]
- Zalar, A.; Hofmann, S.; Panjan, P. Characterization of chemical interdiffusivities at silicon/metal interfaces in initial reaction stages. Vacuum 1997, 48, 625–627. [Google Scholar] [CrossRef]
Sample | N2 Flow | fN2 1 | Atomic Compositions (at.%) | Thickness | Rate | |||
---|---|---|---|---|---|---|---|---|
(sccm) | Cr | W | N | O | (nm) | (nm/min) | ||
Cr65W4N31 | 3 | 0.1 | 64.7 ± 0.6 | 4.0 ± 0.0 | 31.0 ± 0.6 | 0.3 ± 0.1 | 954 | 12.1 |
Cr62W3N35 | 6 | 0.2 | 61.9 ± 0.5 | 2.8 ± 0.1 | 35.0 ± 0.4 | 0.3 ± 0.2 | 1180 | 14.6 |
Cr58W2N40 | 9 | 0.3 | 58.1 ± 0.8 | 2.2 ± 0.1 | 39.4 ± 0.7 | 0.3 ± 0.1 | 947 | 11.4 |
Cr51W2N47 | 12 | 0.4 | 50.6 ± 0.6 | 2.0 ± 0.6 | 46.9 ± 0.5 | 0.3 ± 0.0 | 933 | 10.9 |
Sample | WCr 1 | WW 2 | fN2 | Atomic Compositions (at.%) | Thickness | |||
---|---|---|---|---|---|---|---|---|
(W) | (W) | Cr | W | N | O | (nm) | ||
Cr59W2N39 | 500 | 50 | 0.4 | 57.5 ± 0.5 | 2.3 ± 0.0 | 37.8 ± 0.5 | 2.4 ± 0.0 | 108 |
Cr54W6N40 | 500 | 100 | 0.4 | 52.8 ± 0.5 | 6.5 ± 0.2 | 39.1 ± 0.8 | 1.6 ± 0.2 | 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, L.-C.; Wu, C.-E.; Ou, T.-Y. Mechanical Properties and Diffusion Barrier Performance of CrWN Coatings Fabricated through Hybrid HiPIMS/RFMS. Coatings 2021, 11, 690. https://doi.org/10.3390/coatings11060690
Chang L-C, Wu C-E, Ou T-Y. Mechanical Properties and Diffusion Barrier Performance of CrWN Coatings Fabricated through Hybrid HiPIMS/RFMS. Coatings. 2021; 11(6):690. https://doi.org/10.3390/coatings11060690
Chicago/Turabian StyleChang, Li-Chun, Cheng-En Wu, and Tzu-Yu Ou. 2021. "Mechanical Properties and Diffusion Barrier Performance of CrWN Coatings Fabricated through Hybrid HiPIMS/RFMS" Coatings 11, no. 6: 690. https://doi.org/10.3390/coatings11060690
APA StyleChang, L. -C., Wu, C. -E., & Ou, T. -Y. (2021). Mechanical Properties and Diffusion Barrier Performance of CrWN Coatings Fabricated through Hybrid HiPIMS/RFMS. Coatings, 11(6), 690. https://doi.org/10.3390/coatings11060690