On the Use of Chromium Coating for Inner-Side Fuel Cladding Protection: Thickness Identification Based on Fission Fragments Implantation and Damage Profile
Abstract
:1. Introduction
2. Methodology and Input Parameters
2.1. Fission Products
2.2. SRIM Software
3. Results and Discussion
3.1. Ion Ranges
3.2. Damage Profiles and Thin Film Thickness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Wang, X.; Zhang, R. Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials. Coatings 2020, 10, 808. [Google Scholar] [CrossRef]
- Tang, C.; Stueber, M.; Seifert, H.J.; Steinbrueck, M. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corros. Rev. 2017, 35, 141–165. [Google Scholar] [CrossRef]
- Brachet, J.C.; Idarraga; Trujillo, I.; Flem, M.L.; Saux, M.L.; Vandenberghe, V.; Urvoy, S.; Rouesne, E. Early studies on Cr-coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors. J. Nucl. Mater. 2019, 517, 268–285. [Google Scholar] [CrossRef]
- Brachet, J.C.; Le Saux, M.; Le Flem, M.; Urvoy, S. On-Going Studies at CEA on Chromium Coated Zirconium Based Nuclear Fuel Claddings for Enhanced Accident Tolerant LWRs Fuel. In Proceedings of the Top Fuel; Zurich, Switzerland; Available online: https://www.researchgate.net/publication/283446965 (accessed on 12 June 2021).
- Lach, T.G.; Edwards, D.J.; Buck, E.C.; McNamara, B.K.; Schwantes, J.M.; Clark, R. Fission recoil-induced microstructural evolution of the fuel-cladding interface [FCI] in high burnup BWR fuel. J. Nucl. Mater. 2019, 521, 120–125. [Google Scholar] [CrossRef]
- Schuster, I.; Lemaignan, C. Embrittlement, induced by fission recoils, of the inner surface of PWR fuel cladding—A simulation using heavy ions. J. Nucl. Mater. 1988, 151, 108–111. [Google Scholar] [CrossRef]
- Nakatsuka, M.; Nomata, T.; Umehara, H. Development of the Ultra-microhardness Technique for Post Irradiation Examination of Fuel Cladding Tubes. J. Nucl. Sci. Technol. 1998, 35, 344–352. [Google Scholar] [CrossRef]
- Michau, A.; Maury, F.; Schuster, F.; Lomello, F.; Boichot, R.; Pons, M.; Brachet5, J.-C.; Monsifrot, E. Inner-side coatings for advanced fuel claddings processed by DLI- MOCVD. In Proceedings of the 2017 Water Reactor Fuel Performance Meeting, Jeju Island, Korea, 10–14 September 2017. [Google Scholar]
- Edsinger, K.; Murty, K.L. LWR pellet-cladding interactions: Materials solutions to SCC. JOM 2001, 53, 9–13. [Google Scholar] [CrossRef]
- Michau, A.; Gazal, Y.; Maury, F.; Boichot, R.; Duguet, T.; Pons, M.; Brachet, J.-C.; Monsifrot, E.; Schuster, F.; Maskrot, H. Inner surface protection of nuclear fuel cladding, towards a full-length treatment by DLI-MOCVD, an optimized coating process. In Proceedings of the Top Fuel 2018, Prague, Czech Republic, 30 September–4 October 2018. [Google Scholar]
- Michau, A.; Gazal, Y.; Addou, F.; Maury, F.; Duguet, T.; Boichot, R.; Pons, M.; Monsifrot, E.; Maskrot, H.; Schuster, F. Scale up of a DLI-MOCVD process for the internal treatment of a batch of 16 nuclear fuel cladding segments with a CrCx protective coating. Surf. Coat. Technol. 2019, 375, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Rymzhanov, R.A.; Saifulin, M.M.; Akilbekov, A. Numerical estimation of fission fragments flux on surface of fuel cladding. In Proceedings of the 12th International Conference Interaction of Radiation with Solids, Minsk, Belarus, 19–22 September 2017. [Google Scholar]
- Ziegler, J.F. SRIM-2003. Nucl. Instrum. Methods Phys. Res. B 2004, 219-220, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.A.; Conroy, M.A.; Lach, T.G.; Buck, E.C.; Pellegrini, K.L.; Mcnamara, B.K.; Schwantes, J.M. Distribution of metallic fi ssion-product particles in the cladding liner of spent nuclear fuel. NPJ Mater. Degrad. 2020, 4, 1–9. [Google Scholar]
- Sidky, P. Iodine stress corrosion cracking of Zircaloy reactor cladding: Iodine chemistry (a review). J. Nucl. Mater. 1998, 256, 1–17. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM-The Stopping and Range of Ions in Matter; SRIM Co.: Boston, MA, USA, 2008; ISBN 0-9654207-1-X. [Google Scholar]
- Stoller, R.; Toloczko, M.; Was, G.; Certain, A.; Dwaraknath, S.; Garner, F. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. B 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Kinchin, G.H.; Pease, R.S. The Displacement of Atoms in Solids by Radiation. Rep. Prog. Phys. 1955, 18, 1–51. [Google Scholar] [CrossRef]
- Hirabayashi, T.; Sato, T.; Sagawa, C.; Masaki, N.; Saeki, M.; Adachi, T. Distributions of radionuclides on and in spent nuclear fuel claddings of pressurized water reactors. J. Nucl. Mater. 1990, 174, 45–52. [Google Scholar] [CrossRef]
- Ciszak, C.; Mermoux, M.; Miro, S.; Gutierrez, G.; Lepretre, F.; Popa, I.; Hanifi, K.; Zacharie-Aubrun, I.; Fayette, L.; Chevalier, S. Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod. J. Nucl. Mater. 2017, 495, 392–404. [Google Scholar] [CrossRef]
- Novák, O.; Sevecek, M. Neutronic Analysis of the Candidate Multi-Layer Cladding Materials with Enhanced Accident Tolerance for Wwer Reactors. Acta Polytechnica CTU Proc. 2018, 14, 27–33. [Google Scholar] [CrossRef]
Element | Content (wt. %) |
---|---|
Niobium (Nb) | 1.00 |
Zirconuim (Zr) | balance |
Element | Atomic Number | Weight (amu) | Fraction (%) | Displacement Energy (eV) | Lattice Binding Energy (eV) | Surface Binding Energy (eV) |
---|---|---|---|---|---|---|
Zr | 40 | 91.22 | 99 | 40 | 3 | 6.33 |
Nb | 41 | 92.90 | 1 | 60 | 3 | 7.59 |
Cr (Chromuim) | 24 | 51.99 | 100 | 40 | 3 | 4.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khlifa, R.H.; Nikitenkov, N.N.; Kudiiarov, V.N. On the Use of Chromium Coating for Inner-Side Fuel Cladding Protection: Thickness Identification Based on Fission Fragments Implantation and Damage Profile. Coatings 2021, 11, 710. https://doi.org/10.3390/coatings11060710
Khlifa RH, Nikitenkov NN, Kudiiarov VN. On the Use of Chromium Coating for Inner-Side Fuel Cladding Protection: Thickness Identification Based on Fission Fragments Implantation and Damage Profile. Coatings. 2021; 11(6):710. https://doi.org/10.3390/coatings11060710
Chicago/Turabian StyleKhlifa, Rofida Hamad, Nicolay N. Nikitenkov, and Viktor N. Kudiiarov. 2021. "On the Use of Chromium Coating for Inner-Side Fuel Cladding Protection: Thickness Identification Based on Fission Fragments Implantation and Damage Profile" Coatings 11, no. 6: 710. https://doi.org/10.3390/coatings11060710
APA StyleKhlifa, R. H., Nikitenkov, N. N., & Kudiiarov, V. N. (2021). On the Use of Chromium Coating for Inner-Side Fuel Cladding Protection: Thickness Identification Based on Fission Fragments Implantation and Damage Profile. Coatings, 11(6), 710. https://doi.org/10.3390/coatings11060710