Effect of Temperature on the Microwave-Absorbing Properties of an Al2O3–MoSi2 Coating Mixed with Copper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Spraying Feedstock
2.2. Plasma Spraying Experiment
2.3. Dielectric Properties of the Coating
3. Results and Discussion
3.1. Microstructure of the Coating
3.2. Dielectric Properties of the Coating
3.3. Absorbing Performance of the Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Tian, H.; Cheng, H. Dielectric properties of SiC fiber-reinforced SiC matrix composites in the temperature range from 25 to 700 °C at frequencies between 8.2 and 18 GHz. J. Nucl. Mater. 2013, 432, 57–60. [Google Scholar] [CrossRef]
- Gao, H.; Luo, F.; Wen, Q.; Jia, H.; Zhou, W.; Zhu, D. Enhanced high-temperature dielectric and microwave absorption properties of SiC fiber-reinforced oxide matrix composites. J. Appl. Polym. Sci. 2018, 136, 47097. [Google Scholar] [CrossRef]
- Li, M.; Yin, X.; Zheng, G.; Chen, M.; Tao, M.; Cheng, L.; Zhang, L. High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. J. Mater. Sci. 2014, 50, 1478–1487. [Google Scholar] [CrossRef]
- Song, W.; Cao, M.-S.; Hou, Z.-L.; Yuan, J.; Fang, X.-Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 2009, 61, 201–204. [Google Scholar] [CrossRef]
- Wan, F.; Yan, J.; Xu, H. Improved mechanical and high-temperature electromagnetic wave absorption properties of SiCf/BN/AlPO4 composites with absorber multiwalled carbon nanotubes. Compos. Interfaces 2020, 1–18. [Google Scholar] [CrossRef]
- Yuan, J.; Yang, H.-J.; Hou, Z.-L.; Song, W.; Xu, H.; Kang, Y.-Q.; Jin, H.-B.; Fang, X.-Y.; Cao, M.-S. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol. 2013, 237, 309–313. [Google Scholar] [CrossRef]
- Mu, Y.; Zhou, W.; Hu, Y.; Wang, H.; Luo, F.; Ding, D.; Qing, Y. Temperature-dependent dielectric and microwave absorption properties of SiC /SiC–Al2O3 composites modified by thermal cross-linking procedure. J. Eur. Ceram. Soc. 2015, 35, 2991–3003. [Google Scholar] [CrossRef]
- Dou, Y.-K.; Li, J.B.; Fang, X.-Y.; Jin, H.-B.; Cao, M.-S. The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC. Appl. Phys. Lett. 2014, 104, 052102. [Google Scholar] [CrossRef]
- Micheli, D.; Marchetti, M.; Pastore, R.; Vricella, A.; Gradoni, G.; Moglie, F.; Primiani, V.M. Shielding effectiveness of carbon nanotube reinforced concrete composites by reverberation chamber measurements. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 7–11 September 2015. [Google Scholar]
- Chen, D.; Luo, F.; Zhou, W.; Zhu, D. Effect of Temperature on Microwave-Absorption Property of Plasma-Sprayed Ti3SiC2/NASICON Coating. J. Electron. Mater. 2019, 48, 1506–1510. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, M.; Dong, Y.; Yuan, Z.; Johnson, D. Enhanced dielectric and microwave absorption properties of Cr/Al2O3 coatings deposited by low-power plasma spraying. J. Am. Ceram. Soc. 2016, 100, 620–626. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, W.; Nan, H.; Qing, Y.; Luo, F.; Zhu, D. High temperature microwave absorbing properties of plasma sprayed La0.6Sr0.4FeO3-δ/MgAl2O4 composite ceramic coatings. Ceram. Int. 2020, 46, 6168–6173. [Google Scholar] [CrossRef]
- Su, J.; Zhou, W.; Liu, Y.; Qing, Y.; Luo, F.; Zhu, D. High-temperature dielectric and microwave absorption property of plasma sprayed Ti3SiC2/cordierite coatings. J. Mater. Sci. Mater. Electron. 2015, 27, 2460–2466. [Google Scholar] [CrossRef]
- Pastore, R.; Delfini, A.; Santoni, F.; Marchetti, M.; Albano, M.; Piergentili, F.; Matassa, R. Space Environment Exposure Effects on Ceramic Coating for Thermal Protection Systems. J. Spacecr. Rocket. 2021, 1–7. [Google Scholar] [CrossRef]
- Delfini, A.; Pastore, R.; Santoni, F.; Piergentili, F.; Albano, M.; Alifanov, O.; Budnik, S.; Morzhukhina, A.; Nenarokomov, A.; Titov, D.; et al. Thermal analysis of advanced plate structures based on ceramic coating on carbon/carbon substrates for aerospace Re-Entry Re-Useable systems. Acta Astronaut. 2021, 183, 153–161. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, W.; Tang, X.; Li, P.; Zhu, J. Dielectric and Mechanical Properties of MoSi2/Al2O3 Composites Prepared by Hot Pressing. J. Am. Ceram. Soc. 2010, 93, 3569–3572. [Google Scholar] [CrossRef]
- Wu, Z.-H.; Zhou, W.-C.; Luo, F.; Zhu, D.-M. Effect of MoSi2 content on dielectric and mechanical properties of MoSi2/Al2O3 composite coatings. Trans. Nonferrous Met. Soc. China 2012, 22, 111–116. [Google Scholar] [CrossRef]
- Zhou, Y.-Z.; Liu, M.; Yang, K.; Zeng, W.; Song, J.-B.; Deng, C.-M.; Deng, C.-G. Microstructure and Property of MoSi2-30Al2O3 Electrothermal Coating Prepared by Atmospheric Plasma Spraying. J. Inorg. Mater. 2019, 34, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Shang, K.; Wu, Z.-H.; Zhang, L.-P.; Wang, Q.; Zheng, H.-K. Absorbing Performance of MoSi2/BC Composites Using Bamboo Charcoal Template. J. Mater. Eng. 2019, 47, 122–128. [Google Scholar] [CrossRef]
- Jiao, D.; Zhong, X.; Xu, W.; Qiu, W.; Liu, M.; Liu, Z.; Li, Z.; Zhang, G. High Temperature Oxidation Behavior of MoSi2-CoNiCrAlY Composite Coating Prepared by Plasma Spraying. Rare Met. Mater. Eng. 2019, 48, 1135–1141. [Google Scholar]
- Wu, Z.; Zhou, W.; Luo, F.; Zhu, D. Structure and Dielectric Properties of Alumina Coats Containing MoSi2-Particle Prepared by Atmosphere Plasma Spraying. Mater. Rep. 2011, 25, 63–65. [Google Scholar]
- Moustafa, S.; El-Badry, S.; Sanad, A.; Kieback, B. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. Wear 2002, 253, 699–710. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, C.; Liu, X.; Or, S.W.; Jin, C. Synthesis, characterization and microwave absorption of carbon-coated Cu nanocapsules. Mater. Res. 2014, 17, 477–482. [Google Scholar] [CrossRef]
- Zhao, B.; Shao, G.; Fan, B.; Zhao, W.; Zhang, R. Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Adv. 2015, 5, 42587–42590. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, N.; An, Q.; Xiao, Z.; Zhai, S.; Shi, Z. Facile solvothermal synthesis of novel hetero-structured CoNi–CuO composites with excellent microwave absorption performance. RSC Adv. 2017, 7, 43689–43699. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Xing, H.; Li, Y.; Wang, H. Synthesis of Cu2O/multi-walled carbon nanotube hybrid material and its microwave absorption performance. Res. Chem. Intermed. 2018, 44, 3425–3435. [Google Scholar] [CrossRef]
- Micheli, D.; Pastore, R.; Vricella, A.; Delfini, A.; Marchetti, M.; Santoni, F. Electromagnetic Characterization of Materials by Vector Network Analyzer Experimental Setup. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 195–236. [Google Scholar]
- Singh, P.; Babbar, V.; Razdan, A.; Srivastava, S.; Puri, R. Complex permeability and permittivity, and microwave absorption studies of Ca(CoTi)xFe12−2xO19 hexaferrite composites in X-band microwave frequencies. Mater. Sci. Eng. B 1999, 67, 132–138. [Google Scholar] [CrossRef]
- Panwar, R.; Agarwala, V.; Singh, D. A cost effective solution for development of broadband radar absorbing material using electronic waste. Ceram. Int. 2015, 41, 2923–2930. [Google Scholar] [CrossRef]
- Chen, D.; Luo, F.; Zhou, W.; Zhu, D. Effect of Ti3SiC2 addition on microwave absorption property of plasma sprayed Ti3SiC2/NASICON coatings. J. Mater. Sci. Mater. Electron. 2018, 29, 13534–13540. [Google Scholar] [CrossRef]
- Ranjan, A.; Islam, A.; Pathak, M.; Khan, M.K.; Keshri, A.K. Plasma sprayed copper coatings for improved surface and mechanical properties. Vacuum 2019, 168, 108834. [Google Scholar] [CrossRef]
- Jin-Yuan, M.; Min, L.; Jie, M.; Chun-Min, D.; De-Chang, Z.; Lin, X. Oxidation-resistance of ZrB_2-MoS_2 Composite Coatings Prepared by Atmospheric Plasma Spraying. J. Inorg. Mater. 2015, 30, 282–286. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Q.; Zhao, F. Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers. Intermetallics 2018, 94, 106–113. [Google Scholar] [CrossRef]
- Majumdar, S. Formation of MoSi2 and Al doped MoSi2 coatings on molybdenum base TZM (Mo–0.5Ti–0.1Zr–0.02C) alloy. Surf. Coatings Technol. 2012, 206, 3393–3398. [Google Scholar] [CrossRef]
- Ogbuji, L.U. Oxidation behavior of Cu–Cr environmental barrier coatings on Cu–8Cr–4Nb. Surf. Coat. Technol. 2005, 197, 327–335. [Google Scholar] [CrossRef]
- Cao, M.-S.; Song, W.; Hou, Z.-L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Correia, N.T.; Ramos, J.J.M. On the cooperativity of the β-relaxation: A discussion based on dielectric relaxation and thermally stimulated depolarisation currents data. Phys. Chem. Chem. Phys. 2000, 2, 5712–5715. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, F.; Zhou, W.; Zhu, D. Dielectric and microwave absorption properties of Ti3SiC2 powders. J. Alloys Compd. 2013, 576, 43–47. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, W.; Tang, X.; Zhu, J. Effects of milling methods on the dielectric and the mechanical properties of hot-pressed sintered MoSi2/Al2O3 composites. J. Alloys Compd. 2011, 509, 1920–1923. [Google Scholar] [CrossRef]
- Atwater, J.E.; Wheeler, R.R., Jr. Complex Permittivities and Dielectric Relaxation of Granular Activated Carbons at Microwave Frequencies between 0.2 and 26 GHz. Carbon 2003, 7, 1801–1807. [Google Scholar] [CrossRef]
- Shao, T.; Ma, H.; Wang, J.; Feng, M.; Yan, M.; Wang, J.; Yang, Z.; Zhou, Q.; Luo, H.; Qu, S. High temperature absorbing coatings with excellent performance combined Al2O3 and TiC material. J. Eur. Ceram. Soc. 2020, 40, 2013–2019. [Google Scholar] [CrossRef]
Powder | Purity | Mo | Cu | Si | Fe | Ni | Fe2O3 | SiO2 | Others |
---|---|---|---|---|---|---|---|---|---|
MoSi2 | 99.9 | 64.5 | 0.01 | 35.3 | 0.001 | 0.002 | - | - | Bal. |
Al2O3 | 99.9 | - | - | - | - | - | 0.05 | 0.05 | Bal. |
Cu | 99.9 | - | 99.8 | - | 0.01 | 0.05 | - | - | Bal. |
Parameters | Value |
---|---|
Arc Current (A) | 410 |
Arc Voltage (V) | 30 |
Primary gas (Ar) flow rate (L/h) | 2100 |
Secondary gas (H2) rate (L/h) | 10 |
Spray distance (mm) | 80 |
Powder carrier gas (Ar) flow rate (L/h) | 200 |
Powder feed rate (g/min) | 20 |
Thickness (mm) | Temperature (°C) | Minimum RL Values (dB) | Effective Bandwidth (GHz) (RL < −10 dB) |
---|---|---|---|
25 | −3.9 | - | |
1.0 | 400 | −8.4 | - |
700 | −11.69 | 1.78 | |
25 | −6.2 | - | |
1.2 | 400 | −12.48 | 2.19 |
700 | −14.87 | 2.42 | |
25 | −6.66 | - | |
1.4 | 400 | −13.89 | 1.68 |
700 | −19.09 | 2.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Jiang, Y.; Cai, D.; Xu, J.; Xiao, W. Effect of Temperature on the Microwave-Absorbing Properties of an Al2O3–MoSi2 Coating Mixed with Copper. Coatings 2021, 11, 940. https://doi.org/10.3390/coatings11080940
Gao C, Jiang Y, Cai D, Xu J, Xiao W. Effect of Temperature on the Microwave-Absorbing Properties of an Al2O3–MoSi2 Coating Mixed with Copper. Coatings. 2021; 11(8):940. https://doi.org/10.3390/coatings11080940
Chicago/Turabian StyleGao, Cheng, Yangsheng Jiang, Dayong Cai, Jinyong Xu, and Weiyao Xiao. 2021. "Effect of Temperature on the Microwave-Absorbing Properties of an Al2O3–MoSi2 Coating Mixed with Copper" Coatings 11, no. 8: 940. https://doi.org/10.3390/coatings11080940
APA StyleGao, C., Jiang, Y., Cai, D., Xu, J., & Xiao, W. (2021). Effect of Temperature on the Microwave-Absorbing Properties of an Al2O3–MoSi2 Coating Mixed with Copper. Coatings, 11(8), 940. https://doi.org/10.3390/coatings11080940