Structural and Film-Forming Properties of Millet Starches: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction and Characterization of Starch
Extraction of Starch
Physicochemical Properties
Pasting Properties
X-ray Diffraction
Morphological Properties
Particle Size Distribution (PSD)
2.2.2. Film Preparation and Characterization
Preparation of Films
Properties of Film
Tensile Strength (TS) and Elongation at Break Point (EAB)
2.2.3. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Pasting Properties
3.3. Particle Size Distribution (PSD)
3.4. XRD Pattern
3.5. Morphological Properties
3.6. Characteristics of Starch Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agricultural Organization of the United Nations). The Statistical Division. 2019. Available online: http://faostat.fao.org/beta/en/#data/QC (accessed on 5 August 2021).
- Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol. 2014, 51, 1021–1040. [Google Scholar] [CrossRef] [Green Version]
- Siroha, A.K.; Sandhu, K.S.; Kaur, M. Physicochemical, functional and antioxidant properties of flour from pearl millet varieties grown in India. J. Food Meas. Charact. 2016, 10, 311–318. [Google Scholar] [CrossRef]
- Sharma, N.; Niranjan, K. Foxtail millet: Properties, processing, health benefits, and uses. Food Rev. Int. 2018, 34, 329–363. [Google Scholar] [CrossRef]
- Tiwari, N.; Tiwari, S.; Tripathi, N. Genetic characterization of Indian little millet (Panicum sumatrense) genotypes using random amplified polymorphic DNA markers. Agric. Nat. Resour. 2018, 52, 347–353. [Google Scholar] [CrossRef]
- Kumar, S.R.; Sadiq, M.B.; Anal, A.K. Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). LWT-Food Sci. Technol. 2020, 128, 109465. [Google Scholar] [CrossRef]
- Zhu, F. Structure, physicochemical properties, and uses of millet starch. Food Res. Int. 2014, 64, 200–211. [Google Scholar] [CrossRef]
- Singh, H.; Sodhi, N.S.; Singh, N. Characterisation of starches separated from sorghum cultivars grown in India. Food Chem. 2010, 119, 95–100. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Q.; Cui, T.; Xiao, H. Structural and physical properties of starches isolated from six varieties of millet grown in China. Int. J. Food Prop. 2014, 17, 2344–2360. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Siroha, A.K. Relationships between physicochemical, thermal, rheological and in vitro digestibility properties of starches from pearl millet cultivars. LWT Food Sci. Technol. 2017, 83, 213–224. [Google Scholar] [CrossRef]
- Coppola, G.; Gaudio, M.T.; Lopresto, C.G.; Calabro, V.; Curcio, S.; Chakraborty, S. Bioplastic from renewable biomass: A facile solution for a greener environment. Earth Syst. Environ. 2021, 5, 231–251. [Google Scholar] [CrossRef]
- De Paola, M.G.; Paletta, R.; Lopresto, C.G.; Lio, G.E.; De Luca, A.; Chakraborty, S.; Calabrò, V. Stability of film-forming dispersions: Affects the morphology and optical properties of polymeric films. Polymers 2021, 13, 1464. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic cassava starch-chitosan bilayer films containing essential oils. Food Hydrocoll. 2018, 75, 107–115. [Google Scholar] [CrossRef]
- Paz, M.H.; Guillard, V.; Reynes MGontard, N. Ethylene permeability of wheat gluten film as a function of temperature and relative humidity. J. Membr. Sci. 2005, 256, 108–115. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 2019, 132, 897–905. [Google Scholar] [CrossRef]
- Siroha, A.K.; Punía, S.; Sandhu, K.S.; Karwasra, B.L. Physicochemical, pasting, and rheological properties of pearl millet starches from different cultivars and their relations. Acta Aliment. 2020, 49, 49–59. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Singh, N. Relationships between selected properties of starches from different corn lines. Int. J. Food Prop. 2005, 8, 481–491. [Google Scholar] [CrossRef]
- Williams, P.C.; Kuzina, F.D.; Hlynka, L. A rapid calorimetric procedure for estimating the amylose content of starches and flour. Cereal Chem. 1970, 47, 411–421. [Google Scholar]
- Leach, H.W.; McCowen, L.D.; Schoch, T.J. Structure of the starch granule I. swelling and solubility patterns of various starches. Cereal Chem. 1959, 36, 534–544. [Google Scholar]
- Perera, C.; Hoover, K. Influence of hydroxypropylation on retrogradation properties of native, defatted and heat moisture treated potato starches. Food Chem. 1999, 64, 361–375. [Google Scholar] [CrossRef]
- da Rosa Zavareze, E.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat–moisture treated potato starch film. Food Chem. 2012, 132, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Yuan, Y.; Guo, Q.; Wu, Y.; Li, Y.; Yu, H. Characterization and antimicrobial properties of water chestnut starch-chitosan edible films. Int. J. Biol. Macromol. 2013, 61, 169–174. [Google Scholar] [CrossRef]
- Fan, H.; Ji, N.; Zhao, M.; Xiong, L.; Sun, Q. Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food Chem. 2016, 192, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Gontard, N.; Guilbert, S.; Cuq, J.L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- Han, J.H.; Floros, J.D. Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J. Plast. Film Sheet. 1997, 13, 287–298. [Google Scholar] [CrossRef]
- Srichuwong, S.; Jane, J.I. Physicochemical properties of starch affected by molecular composition and structures: A review. Food Sci. Biotechnol. 2007, 16, 663–674. [Google Scholar]
- Atrous, H.; Benbettaieb, N.; Chouaibi, M.; Attia, H.; Ghorbel, D. Changes in wheat and potato starches induced by gamma irradiation: A comparative macro and microscopic study. Int. J. Food Prop. 2017, 20, 1532–1546. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Sreenivasulu, N.; Liu, Q. Waxy editing: Old meets new. Trends Plant Sci. 2020, 25, 963–966. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Li, Y.; Qian, H.; Qi, X.; Zhang, H.; Wang, L. Understanding the molecular weight distribution, in vitro digestibility and rheological properties of the deep-fried wheat starch. Food Chem. 2020, 331, 127315. [Google Scholar] [CrossRef]
- Lin, L.; Huang, J.; Zhao, L.; Wang, J.; Wang, Z.; Wei, C. Effect of granule size on the properties of lotus rhizome C-type starch. Carbohydr. Polym. 2015, 134, 448–457. [Google Scholar] [CrossRef]
- Bangar, S.P.; Kumar, M.; Whiteside, W.S.; Tomar, M.; Kennedy, J.F. Litchi (Litchi chinensis) seed starch: Structure, properties, and applications-A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100080. [Google Scholar]
- Xia, W.; Chen, J.; He, D.; Wang, Y.; Wang, F.; Zhang, Q.; Liu, Y.; Cao, Y.; Fu, Y.; Li, J. Changes in physicochemical and structural properties of tapioca starch after high speed jet degradation. Food Hydrocoll. 2019, 95, 98–104. [Google Scholar] [CrossRef]
- Shah, U.; Gani, A.; Ashwar, B.A.; Shah, A.; Wani, I.A.; Masoodi, F.A. Effect of infrared and microwave radiations on properties of Indian Horse Chestnut starch. Int. J. Biol. Macromol. 2016, 84, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Wani, I.A.; Sogi, D.S.; Wani, A.A.; Gill, B.S.; Shivhare, U.S. Physico-chemical properties of starches from Indian kidney bean (Phaseolus vulgaris) cultivars. Int. J. Food Sci. Technol. 2010, 45, 2176–2185. [Google Scholar] [CrossRef]
- Bangar, S.P.; Kumar, M.; Siroha, A.K.; Kennedy, J.F.; Dhull, S.B.; Whiteside, W.S. Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydr. Polym. 2021, 260, 117776. [Google Scholar]
- Sudheesh, C.; Sunooj, K.V.; Anjali, K.U.; Aaliya, B.; Navaf, M.; Kumar, S.; Sajeevkumar, V.A.; George, J. Effect of lysine incorporation, annealing and heat moisture treatment alone and in combination on the physico-chemical, retrogradation, rheological properties and in vitro digestibility of kithul (Caryota urens L.) starch. Int. J. Food Sci. Technol. 2020, 55, 2391–2398. [Google Scholar] [CrossRef]
- Bangar, S.P.; Kumar, M.; Whiteside, W.S. Mango seed starch: A sustainable and eco-friendly alternative to increasing industrial requirements. Int. J. Biol. Macromol. 2021, 183, 1807–1817. [Google Scholar] [CrossRef]
- Fu, L.; Liu, L.; Chen, W.; Wang, Q.; Lv, X.; Wang, J.; Ji, Z.; Yu, G.; Liu, Q.; Zhang, X. Physicochemical and functional characteristics of starches from common vetch (Vicia sativa L.). LWT-Food Sci. Technol. 2020, 131, 109694. [Google Scholar] [CrossRef]
- Madsen, M.H.; Christensen, D.H. Changes in viscosity properties of potato starch during growth. Starch-Stärke 1996, 48, 245–249. [Google Scholar] [CrossRef]
- Igathinathane, C.; Tumuluru, J.S.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Melin, S.; Mohammad, E. Simple and inexpensive method of wood pellets macro-porosity measurement. Bioresour. Technol. 2010, 101, 6528–6537. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Barreto, F.F.; Bello-Pérez, L.A.; Nuñez-Santiago, C.; Yee-Madeira, H.; Sánchez, C.E.V. Relationships among molecular, physicochemical and digestibility characteristics of Andean tuber starches. Int. J. Biol. Macromol. 2021, 182, 472–481. [Google Scholar] [CrossRef]
- Parker, R.; Ring, S.G. Aspects of the physical chemistry of starch. J. Cereal Sci. 2001, 34, 1–17. [Google Scholar] [CrossRef]
- Hsien-Chih, H.W.; Sarko, A. The double-helical molecular structure of crystalline A-amylose. Carbohydr. Res. 1978, 61, 27–40. [Google Scholar] [CrossRef]
- Crofts, N.; Nakamura, Y.; Fujita, N. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Sci. 2017, 262, 1–8. [Google Scholar] [CrossRef]
- Hoover, R.; Ratnayake, W.S. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 2002, 78, 489–498. [Google Scholar] [CrossRef]
- Annor, G.A.; Marcone, M.; Bertoft, E.; Seetharaman, K. Physical and molecular characterization of millet starches. Cereal Chem. 2014, 91, 286–292. [Google Scholar] [CrossRef]
- Wang, B.; Gao, W.; Kang, X.; Dong, Y.; Liu, P.; Yan, S.; Yu, B.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Structural changes in corn starch granules treated at different temperatures. Food Hydrocoll. 2021, 118, 106760. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Sánchez-Rivera, M.M.; Núñez-Santiago, C.; Rodríguez-Ambriz, S.L.; Román-Gutierrez, A.D. Effect of the pearled in the isolation and the morphological, physicochemical and rheological characteristics of barley starch. Carbohydr. Polym. 2010, 81, 63–69. [Google Scholar] [CrossRef]
- Ballesteros-Mártinez, L.; Pérez-Cervera, C.; Andrade-Pizarro, R. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS J. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Hosseini, S.N.; Pirsa, S.; Farzi, J. Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polym. Test. 2021, 97, 107182. [Google Scholar] [CrossRef]
- Bangar, S.P.; Nehra, M.; Siroha, A.K.; Petrů, M.; Ilyas, R.A.; Devi, U.; Devi, P. Development and characterization of physical modified pearl millet starch-based films. Foods 2021, 10, 1609. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Saberi, B.; Pristijono, P.; Stathopoulos, C.E.; Golding, J.B.; Scarlett, C.J.; Bowyer, M.; Vuong, Q.V. Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. J. Food Sci. Technol. 2017, 54, 2270–2278. [Google Scholar] [CrossRef]
- Saberi, B.; Chockchaisawasdee, S.; Golding, J.B.; Scarlett, C.J.; Stathopoulos, C.E. Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. Int. J. Biol. Macromol. 2017, 104, 345–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittaya, T. Microcomposites of rice starch film reinforced with microcrystalline cellulose from palm pressed fiber. Int. Food Res. J. 2009, 16, 493–500. [Google Scholar]
- Al-Hashimi, A.G.; Ammar, A.B.; Cacciola, F.; Lakhssassi, N. Development of a millet starch edible film containing clove essential oil. Foods 2020, 9, 184. [Google Scholar] [CrossRef] [Green Version]
Sample | Amylose Content (%) | Swelling Power (g/g) | Solubility (%) | Transmittance (%) |
---|---|---|---|---|
Barnyard millet | 14.42 ± 0.2 d | 18.83 ± 0.3 f | 20.1 ± 0.1 e | 5.14 ± 0.01 c |
Finger millet | 11.63 ± 0.4 b | 14.43 ± 0.2 a | 18.7 ± 0.2 d | 5.06 ± 0.03 c |
Foxtail millet | 16.61 ± 0.2 e | 16.42 ± 0.4 e | 18.1 ± 0.1 c | 3.46 ± 0.02 a |
Kodo millet | 13.99 ± 0.3 c | 15.37 ± 0.3 c | 14.9 ± 0.3 a | 4.23 ± 0.01 b |
Little millet | 11.01 ± 0.4 a | 15.83 ± 0.3 d | 25.8 ± 0.2 f | 3.35 ± 0.01 a |
Proso millet | 11.12 ± 0.2 a | 14.72 ± 0.2 b | 15.9 ± 0.2 b | 5.24 ± 0.02 d |
Sample | PV (cP) | BV (cP) | TV (cP) | SV (cP) | FV (cP) | PT (°C) |
---|---|---|---|---|---|---|
Barnyard millet | 2985 ± 21 f | 1436 ± 15 f | 1549 ± 14 c | 1904 ± 20 e | 3453 ± 23 e | 82.4 ± 0.1 d |
Finger millet | 2956 ± 25 e | 624 ± 11 b | 2332 ± 25 e | 1333 ± 11 c | 3665 ± 26 f | 79.1 ± 0.1 a |
Foxtail millet | 2178 ± 19 b | 976 ± 14 c | 1202 ± 12 a | 1906 ± 18 e | 3108 ± 21 c | 80.0 ± 0.2 b |
Kodo millet | 2734 ± 26 c | 1187 ± 16 d | 1547 ± 16 c | 1691 ± 20 d | 3238 ± 28 d | 81.5 ± 0.1 c |
Little millet | 1518 ± 20 a | 200 ± 9 a | 1318 ± 11 b | 810 ± 11 a | 2128 ± 21 a | 84.1 ± 0.2 e |
Proso millet | 2934 ± 27 d | 1316 ± 12 e | 1618 ± 15 d | 888 ± 9 b | 2204 ± 23 b | 79.9 ± 0.2 b |
Sample | D(3,2) (µm) | D(4,3) (µm) | Dv (10) (µm) | Dv (50) (µm) | Dv (90) (µm) | RC (%) |
---|---|---|---|---|---|---|
Barnyard millet | 5.98 ± 0.1 d | 9.48 ± 0.5 d | 4.60 ± 0.2 d | 8.98 ± 0.4 d | 15.5 ± 0.6 d | 28.21 ± 2 b |
Finger millet | 5.49 ± 0.3 c | 8.80 ± 0.3 c | 4.16 ± 0.3 c | 8.37 ± 0.5 c | 14.4 ± 0.3 c | 30.12 ± 1 d |
Foxtail millet | 5.93 ± 0.2 d | 9.46 ± 0.4 d | 4.70 ± 0.2 e | 9.03 ± 0.4 d | 15.3 ± 0.4 d | 24.73 ± 2 a |
Kodo millet | 5.96 ± 0.4 d | 9.43 ± 0.5 d | 4.66 ± 0.3 e | 8.92 ± 0.3 d | 15.4 ± 0.5 d | 29.88 ± 2 c |
Little millet | 4.67 ± 0.3 a | 7.16 ± 0.4 a | 3.62 ± 0.1 a | 6.82 ± 0.3 a | 11.5 ± 0.3 a | 31.06 ± 3 e |
Proso millet | 5.17 ± 0.1 b | 8.10 ± 0.2 b | 4.10 ± 0.2 b | 7.71 ± 0.5 b | 13.0 ± 0.4 b | 31.62 ± 2 f |
Sample | Moisture Content (%) | Thickness (mm) | Water Solubility (%) | Opacity (%) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|
Barnyard millet | 12.1 ± 1.5 c | 0.13 ± 0.001 | 28.1 ± 0.3 d | 2.41 ± 00 c | 4.77 ± 0.30 c | 53.4 ± 1.5 a |
Finger millet | 11.9 ± 1.1 c | 0.11 ± 0.002 | 27.2 ± 0.4 c | 3.21 ± 00 d | 6.87 ± 0.09 e | 64.4 ± 2.1 c |
Foxtail millet | 14.6 ± 1.3 e | 0.12 ± 0.003 | 27.6 ± 0.3 c | 2.45 ± 00 c | 6.95 ± 0.11 f | 73.2 ± 1.8 e |
Kodo millet | 13.5 ± 1.2 d | 0.13 ± 0.002 | 25.6 ± 0.2 a | 2.14 ± 00 b | 4.21 ± 0.08 b | 63.6 ± 2.2 b |
Little millet | 10.1 ± 1.1 a | 0.15 ± 0.001 | 31.5 ± 0.4 e | 1.75 ± 00 a | 3.79 ± 0.23 a | 64.1 ± 1.5 c |
Proso millet | 10.6 ± 1.0 b | 0.12 ± 0.001 | 26.8 ± 0.2 b | 2.42 ± 00 c | 5.91 ± 0.31 d | 65.4 ± 2.4 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangar, S.P.; Siroha, A.K.; Nehra, M.; Trif, M.; Ganwal, V.; Kumar, S. Structural and Film-Forming Properties of Millet Starches: A Comparative Study. Coatings 2021, 11, 954. https://doi.org/10.3390/coatings11080954
Bangar SP, Siroha AK, Nehra M, Trif M, Ganwal V, Kumar S. Structural and Film-Forming Properties of Millet Starches: A Comparative Study. Coatings. 2021; 11(8):954. https://doi.org/10.3390/coatings11080954
Chicago/Turabian StyleBangar, Sneh Punia, Anil Kumar Siroha, Manju Nehra, Monica Trif, Vandana Ganwal, and Sumit Kumar. 2021. "Structural and Film-Forming Properties of Millet Starches: A Comparative Study" Coatings 11, no. 8: 954. https://doi.org/10.3390/coatings11080954
APA StyleBangar, S. P., Siroha, A. K., Nehra, M., Trif, M., Ganwal, V., & Kumar, S. (2021). Structural and Film-Forming Properties of Millet Starches: A Comparative Study. Coatings, 11(8), 954. https://doi.org/10.3390/coatings11080954