Investigation of Morphology of Aluminum Co-Doped Scandium Stabilized Zirconia (ScAlSZ) Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Kinetic Model
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawada, T.; Mizusaki, J. Current electrolytes and catalysts. In Handbook of Fuel Cells; Vielstich, W.H., Gasteiger, A.H., Yokokawa, A.L., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Talebi, T.; Haji, M.; Raissi, B. Effect of sintering temperature on the microstructure, roughness and electrochemical impedance of electrophoretically deposited YSZ electrolyte for SOFCs. Int. J. Hydrogen Energy 2010, 35, 9420–9426. [Google Scholar] [CrossRef]
- Chen, X.J.; Khor, K.A.; Chan, S.H.; Yu, L.G. Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Mater. Sci. Eng. A 2002, 335, 246–252. [Google Scholar] [CrossRef]
- Gibson, I.R.; Dransfield, G.P.; Irvine, J.T.S. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J. Mater. Sci. 1998, 33, 4297–4305. [Google Scholar] [CrossRef]
- Guo, X.; Maier, J. Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis. J. Electrochem. Soc. 2002, 148, E121. [Google Scholar] [CrossRef]
- Zhang, L.; Virkar, A.V. On Space Charge and Spatial Distribution of Defects in Yttria-Stabilized Zirconia. J. Electrochem. Soc. 2017, 164, F1506–F1523. [Google Scholar] [CrossRef]
- Maier, J. On the Conductivity of Polycrystalline Materials. Ber. Bunsenges. Phys. Chem. 1986, 90, 26–33. [Google Scholar] [CrossRef]
- Göbel, M.C.; Gregori, G.; Maier, J. Mixed conductivity in nanocrystalline highly acceptor doped cerium oxide thin films under oxidizing conditions. In Physical Chemistry Chemical Physics; Royal Society of Chemistry: London, UK, 2011; Volume 13, pp. 10940–10945. [Google Scholar]
- Kim, S.; Avila-Paredes, H.J.; Wang, S.; Chen, C.T.; De Souza, R.A.; Martin, M.; Munir, Z.A. On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia. Phys. Chem. Chem. Phys. 2009, 11, 3035–3038. [Google Scholar] [CrossRef] [PubMed]
- Durá, O.J.; López De La Torre, M.A.; Vázquez, L.; Chaboy, J.; Boada, R.; Rivera-Calzada, A.; Santamaria, J.; Leon, C. Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects. Phys. Rev. B-Cond. Matter Mater. Phys. 2010, 81, 184301. [Google Scholar] [CrossRef] [Green Version]
- Fleig, J. A Finite Element Study on the Grain Boundary Impedance of Different Microstructures. J. Electrochem. Soc. 2006, 145, 2081. [Google Scholar] [CrossRef]
- Aoki, M.; Chiang, Y.M.; Kosacki, I.; Lee, L.J.R.; Tuller, H.; Liu, Y. Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J. Am. Ceram. Soc. 1996, 79, 1169–1180. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Petrovsky, V.; Anderson, H.U. Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ion. 2000, 136–137, 1225–1233. [Google Scholar] [CrossRef]
- Kiguchi, T.; Kodama, Y.; Konno, T.J.; Funakubo, H.; Sakurai, O.; Shinozaki, K. Chemical and structural effects on ionic conductivity at columnar grain boundaries in yttria-stabilized zirconia thin films. J. Ceram. Soc. Jpn. 2014, 122, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Kiguchi, T.; Konno, T.J.; Funakubo, H.; Sakurai, O.; Shinozaki, K. Columnar grain boundary coherence in yttria-stabilized zirconia thin film: Effects on ionic conductivity. J. Ceram. Soc. Jpn. 2014, 122, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Boch, P.; Nièpce, J.-C.; Carter, C.B.; Norton, M.G.; Caruta, B.M. Ceramics and Composite Materials; Springer: New York, NY, USA, 2007. [Google Scholar]
- Nagarajan, G. Thermodynamic Properties of Some Metal Hexafluorides. Bull. Des. Soc. Chim. Belges 2010, 71, 77–81. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A Vac. Surf. Films 2003, 21, S117–S128. [Google Scholar] [CrossRef]
- Barna, P.B.; Adamik, M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 1998, 317, 27–33. [Google Scholar] [CrossRef]
- Greene, J.E. Thin Film Nucleation, Growth, and Microstructural Evolution: An Atomic Scale View. In Handbook of Deposition Technologies for Films and Coatings; Elsevier Science: Amsterdam, The Netherlands, 2013; Volume 53, pp. 554–620. ISBN 9788578110796. [Google Scholar]
- Muzard, S.; Templier, C.; Delafond, J.; Girard, J.C.; Thiaudiere, D.; Pranevicius, L.; Galdikas, A. Development of the micro structure of sputter deposited gold on amorphous carbon. Surf. Coat. Technol. 1998, 100–101, 98–102. [Google Scholar] [CrossRef]
- Evans, J.W.; Thiel, P.A.; Bartelt, M.C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006, 61, 1–128. [Google Scholar] [CrossRef]
- Galdikas, A.; Čerapaite-Trušinskiene, R.; Laukaitis, G.; Dudonis, J. Real-time kinetic modeling of YSZ thin film roughness deposited by e-beam evaporation technique. Appl. Surf. Sci. 2008, 255, 1929–1933. [Google Scholar] [CrossRef]
- Metiu, H.; Lu, Y.-T.; Zhang, Z. Epitaxial growth and the art of computer simulations. Science 1992, 255, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
- Galdikas, A. Non-monotonous dependence of surface roughness on factors influencing energy of adatoms during thin island film growth. Surf. Sci. 2006, 600, 2705–2710. [Google Scholar] [CrossRef]
- Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053. [Google Scholar] [CrossRef]
- Barna, P.B.; Adamik, M. Growth Mechanisms of Polycrystalline Thin Films. In Science and Technology of Thin Films; Matacotta, F.C., Ottaviani, G., Eds.; World Scientific Publishing: Singapore, 1995; pp. 1–28. [Google Scholar]
- Knuyt, G.; Quaeyhaegens, C.; D’Haen, J.; Stals, L.M. A quantitative model for the evolution from random orientation to a unique texture in PVD thin film growth. Thin Solid Films 1995, 258, 159–169. [Google Scholar] [CrossRef]
- Kairaitis, G.; Grigaliūnas, A.; Baginskas, A.; Galdikas, A. Kinetic modeling of phase separation and surface segregation in growing a-C:Ni thin films. Surf. Coat. Technol. 2018, 352, 120–127. [Google Scholar] [CrossRef]
- Kurc, B.; Pigłowska, M.; Rymaniak, Ł.; Fuć, P. Modern nanocomposites and hybrids as electrode materials used in energy carriers. Nanomaterials 2021, 11, 538. [Google Scholar] [CrossRef]
- Calderon Velasco, S.; Cavaleiro, A.; Carvalho, S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Prog. Mater. Sci. 2016, 84, 158–191. [Google Scholar] [CrossRef] [Green Version]
- Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Gross, S.; Maragno, C.; Tondello, E. Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look. Coord. Chem. Rev. 2006, 250, 1294–1314. [Google Scholar] [CrossRef]
- Charton, C.; Fahland, M. Optical properties of thin Ag films deposited by magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 181–186. [Google Scholar] [CrossRef]
- Tamulevičius, S.; Meškinis, Š.; Tamulevičius, T.; Rubahn, H.G. Diamond like carbon nanocomposites with embedded metallic nanoparticles. Rep. Prog. Phys. 2018, 81, 024501. [Google Scholar] [CrossRef] [Green Version]
- Derby, B.; Cui, Y.; Baldwin, J.K.; Misra, A. Effects of substrate temperature and deposition rate on the phase separated morphology of co-sputtered, Cu-Mo thin films. Thin Solid Films 2018, 647, 50–56. [Google Scholar] [CrossRef]
- Ankit, K.; Derby, B.; Raghavan, R.; Misra, A.; Demkowicz, M.J. 3-D phase-field simulations of self-organized composite morphologies in physical vapor deposited phase-separating binary alloys. J. Appl. Phys. 2019, 126, 075306. [Google Scholar] [CrossRef]
- Bouaouina, B.; Mastail, C.; Besnard, A.; Mareus, R.; Nita, F.; Michel, A.; Abadias, G. Nanocolumnar TiN thin film growth by oblique angle sputter-deposition: Experiments vs. simulations. Mater. Des. 2018, 160, 338–349. [Google Scholar] [CrossRef]
- To, T.B.T.; Aarão Reis, F.D.A. Domain formation in the deposition of thin films of two-component mixtures. J. Alloys Compd. 2020, 835, 155093. [Google Scholar] [CrossRef] [Green Version]
- Mińkowski, M.; Załuska-Kotur, M.A.; Kret, S.; Chusnutdinow, S.; Schreyeck, S.; Brunner, K.; Molenkamp, L.W.; Karczewski, G. Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations. J. Alloys Compd. 2018, 747, 809–814. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Jacobson, D.; Thompson, G.B. A molecular dynamics study on stress generation during thin film growth. Appl. Surf. Sci. 2019, 469, 537–552. [Google Scholar] [CrossRef]
- Stewart, J.A.; Dingreville, R. Microstructure morphology and concentration modulation of nanocomposite thin-films during simulated physical vapor deposition. Acta Mater. 2020, 188, 181–191. [Google Scholar] [CrossRef]
- Powers, M.; Derby, B.; Nerlige Manjunath, S.; Misra, A. Hierarchical morphologies in co-sputter deposited thin films. Phys. Rev. Mater. 2020, 4, 123801. [Google Scholar] [CrossRef]
- Kairaitis, G.; Galdikas, A. Modelling of phase structure and surface morphology evolution during compound thin film deposition. Coatings 2020, 10, 1077. [Google Scholar] [CrossRef]
- Singh, A.V.; Ferri, M.; Tamplenizza, M.; Borghi, F.; Divitini, G.; Ducati, C.; Lenardi, C.; Piazzoni, C.; Merlini, M.; Podestà, A.; et al. Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion. Nanotechnology 2012, 23, 475101. [Google Scholar] [CrossRef]
- Heiroth, S.; Lippert, T.; Wokaun, A.; Döbeli, M. Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition. Appl. Phys. A 2008, 93, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, L.; Raoufi, D. Crystallography characteristics of tetragonal nano-zirconia films under various oxygen partial pressure. Surf. Eng. 2018, 35, 618–626. [Google Scholar] [CrossRef]
- Sriubas, M.; Kainbayev, N.; Virbukas, D.; Bočkute, K.; Rutkuniene, Ž.; Laukaitis, G. Structure and Conductivity Studies of Scandia and Alumina Doped Zirconia Thin Films. Coatings 2019, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Rivière, J.P.; Pichon, L.; Drouet, M.; Poquillon, D.; Galdikas, A. Silicon based coatings deposited by dynamic ion mixing for oxidation protection of a Ti6242 alloy. Surf. Coat. Technol. 2007, 201, 8343–8347. [Google Scholar] [CrossRef]
- Pandey, S.K.; Thakur, O.P.; Raman, R.; Goyal, A.; Gupta, A. Structural and optical properties of YSZ thin films grown by PLD technique. Appl. Surf. Sci. 2011, 257, 6833–6836. [Google Scholar] [CrossRef]
- Zoita, N.C.; Grigorescu, C.E.A. Influence of growth temperature and deposition duration on the structure, surface morphology and optical properties of InN/YSZ (1 0 0). Appl. Surf. Sci. 2012, 258, 6046–6051. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galdikas, A.; Sriubas, M.; Kairaitis, G.; Virbukas, D.; Bockute, K.; Galdikas, M.; Moskalioviene, T.; Laukaitis, G. Investigation of Morphology of Aluminum Co-Doped Scandium Stabilized Zirconia (ScAlSZ) Thin Films. Coatings 2022, 12, 31. https://doi.org/10.3390/coatings12010031
Galdikas A, Sriubas M, Kairaitis G, Virbukas D, Bockute K, Galdikas M, Moskalioviene T, Laukaitis G. Investigation of Morphology of Aluminum Co-Doped Scandium Stabilized Zirconia (ScAlSZ) Thin Films. Coatings. 2022; 12(1):31. https://doi.org/10.3390/coatings12010031
Chicago/Turabian StyleGaldikas, Arvaidas, Mantas Sriubas, Gediminas Kairaitis, Darius Virbukas, Kristina Bockute, Matas Galdikas, Teresa Moskalioviene, and Giedrius Laukaitis. 2022. "Investigation of Morphology of Aluminum Co-Doped Scandium Stabilized Zirconia (ScAlSZ) Thin Films" Coatings 12, no. 1: 31. https://doi.org/10.3390/coatings12010031
APA StyleGaldikas, A., Sriubas, M., Kairaitis, G., Virbukas, D., Bockute, K., Galdikas, M., Moskalioviene, T., & Laukaitis, G. (2022). Investigation of Morphology of Aluminum Co-Doped Scandium Stabilized Zirconia (ScAlSZ) Thin Films. Coatings, 12(1), 31. https://doi.org/10.3390/coatings12010031