Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review
Abstract
:1. Introduction
2. Methods
3. Roughness and Wettability
Surface Property | Author, Year, and Reference | Short Conclusion |
---|---|---|
Wettability | Hao et al., 2005 [68] | Observation and study of the surface of laser-modified Ti6Al4V alloy showed an increase in the surface wettability which is beneficial for medical applications of titanium alloys. The increase in the contact angle after laser modification is a result, according to the authors, of an increase in the surface energy of the modified material and an increase in roughness parameters. |
Lawrence et al., 2006 [56] | Lawrence et al. demonstrated that laser treatment improves the surface wettability as a result of a change in the surface energy, an increase in the oxygen content, and an increase in the surface roughness. The cell studies carried out revealed an increase in bone cell adhesion and proliferation for Ti6Al4V titanium alloy samples subjected to laser modification, compared to a titanium alloy without modification. | |
Cunha, A. et al., 2013 [69] | Obtaining an anisotropic surface by modification is beneficial for controlling the surface wettability and this property is also indicated to improve stem cell adhesion. | |
May et al., 2015 [70] | The surface anisotropy of titanium alloy Ti6Al4V subjected to fiber-laser system modification was demonstrated. Wetting angles were smaller for the measurement performed perpendicularly for each laser operating frequency. The formation of contact anisotropy after laser modification was related to the frequency of the laser work, and increasing this parameter decreased the anisotropy. | |
Raimbault O. et al., 2016 [71] | The paper focused on the bioactivity of cells towards a femtosecond laser-modified surface but also examined the wettability of the Ti6Al4V titanium alloy, which was determined by measuring the contact angle. It was shown that the storage medium had a great influence on the change of the wettability characteristics of the modified samples. Samples stored in boiling water were slower to change their character to hydrophobic ones due to the slowing down of the passivation process, and the atmospheric environment accelerated these changes. | |
Rotella 2017 [72] | The authors used three methods for the surface modification of titanium alloy Ti6Al4V, one of them was a femtosecond laser treatment. The hydrophobic character of the laser-modified samples was observed, but at the same time, it was pointed out that this was not a disadvantage of such a surface because it gives, in a long-term context, a chance for a stronger bonding of the cells with the laser-modified implant. | |
Lu et al., 2018 [73] | A laser treatment at different laser fluence values was applied to pure titanium samples and then they were chemically treated. For each of the modification combinations, it was shown that the femtosecond laser modifications decreased the contact angle immediately after the laser treatment, while the contact angle increased after the modification. The possibility to obtain a stable structure with hydrophobic properties was pointed out in the paper as the most important advantage of such a modification. | |
Pires et al., 2017 [54] | The Nd: YAG laser treatment produced a superhydrophilic surface. The laser-modified surface consisted of more oxygen, which was one of the factors influencing the change in surface wettability. It was indicated that the use of this type of laser allows for the control of parameters important for bone cells. | |
Menci et al., 2019 [24] | In this study, a laser beam modification was performed using two different types of Nd: YAG laser and fiber laser, for different laser wavelengths. It was shown that a fiber laser processing ns 1064 nm produces the highest surface roughness with the greatest reduction in wetting angle. The paper also presents the possibility of using individual lasers with specific parameters to process specific implant components because of the roughness that can be achieved with them. | |
Murillo et al., 2019 [74] | It was observed that immediately after the modification of a Ti6Al4V titanium alloy with a UV ns laser and IR-fs pulsed lasers, the surface exhibited hydrophilic properties. In this study, the effect of the sample holding environment of titanium on material aging was investigated. | |
Shaikh et al., 2019 [75] | In this study, a decrease in the contact angle was observed for Ti6Al4V titanium alloy samples which underwent laser modification. It was also observed that the surface of the samples after laser treatment became hydrophilic immediately after the modification; however, during the storage of the material, the contact angle was tested again, and the results showed a change in the surface character toward a hydrophobic one. The authors suggested that this could be due to the oxidation of the modified film as well as contaminants deposited on the sample (the samples were stored in an atmospheric environment). | |
Dou et al., 2020 [76] | An increase in hydrophilicity with an increasing laser fluence was observed. The surface hydrophilicity was not stable, and the wettability of the surface changed to hydrophobic properties with time. The need for research on the stability of surface hydrophilicity was indicated. | |
Wang et al., 2021 [77] | A 355 mm UV laser modification of commercially pure titanium was carried out. In this study, the possibility of controlling the wettability by light and sample heating was demonstrated. The samples showed a superhydrophilic surface immediately after laser modification. | |
Mukherjee et al., 2021 [78] | In this paper, the laser modification of titanium alloy Ti6Al4V using a Yb-doped fiber laser was carried out. It was shown that the surface produced by the laser was anisotropic, which revealed that the contact angle for water was different for a parallel and perpendicular incidence of a drop on the surface. It was shown that in the direction parallel to the laser beam direction, the wetting of the surface was higher as a result of droplet propagation along the corrugation grooves. | |
Wang et al., 2021 [79] | A Ti6Al4V titanium alloy was modified with a UV laser at a wavelength of 355 nm. The results of the contact angle measurements were presented for three conditions: for the untreated sample (hydrophilic surface), the sample after laser treatment (superhydrophilic surface), and the sample modified with a laser and additionally subjected to a heat treatment (hydrophobic surface). For the same samples, an erosion test was performed and it was observed that the fastest erosion process occurred for the laser-modified samples and the slowest for those with a hydrophobic surface. | |
Singh et al., 2021 [80] | In this study, a CO2 laser modification was carried out on titanium Ti6Al4V alloys. After the modification, the values of the contact angle and surface energy were investigated. It was found that for the laser-modified surface, the contact angle was higher than for the unmodified samples, and the surface energy also increased. It was also found that a decrease in the surface energy resulted in a decrease in the affinity of the modified surface for bacteria, which is beneficial for the potential use of the material in implant production. | |
Li et al., 2022 [81] | Pure titanium samples were subjected to laser surface texturing. Wetting angle studies were carried out using distilled water and modified-simulated body fluid (m-SBF). For both fluids, the laser-modified surface showed an increased wettability. It was indicated that the drops on the structure with a higher roughness realized Wenzel’s law, which explained the decrease in the contact angle. The wetting angle for the water was higher than for the m-SBF, which gave information that cells would grow better on such a substrate. |
4. Corrosion
5. Hardness
Material | Microhardness and Hardness after Laser Treatment | Laser Parameters | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Type of Laser | Energy/Laser Power | Impact Time | Pulse Duration | Frequency | Scan Speed (Mm/S) | Laser Pulses | Environment | |||
Ti35Nb10Ta | 3.8 GPa | Nd: YAG | 1000 W | - | - | - | 6.67 mm/s | - | Helium | [120] |
3.3 GPa | 1500 W | - | - | - | 10 mm/s | - | ||||
Ti30Nb4Sn | untreated material: 3.06 GPa | - | - | - | - | - | - | - | [148] | |
3.5 GPa | Nd: YAG | 1000 W | - | - | - | the authors 6.67 mm/s | - | Helium | [120] | |
3.3 GPa | 1500 W | 10 mm/s | - | |||||||
untreated material 2.44 GPa: | [149] | |||||||||
Ti6Al4V | 4.9 GPa | Nd: YAG | 50 mJ | - | - | 10 Hz | - | - | Argon | [105] |
3, 4.01 for 150 µJ, 2.59 GPa for 240 µJ | femtosecond laser | 10–240 µJ | - | 290 fs | 50 kHz | - | - | - | [145] | |
3.84 GPa | Nanosecond Laser Shock Peening (LSP | 4 J | 1 s | 20 ns | 1 H | - | - | - | ||
294 GPa | 3 s | |||||||||
Ti-5Al-2.5Sn | 4.02 GPa | Nd: YAG | 165 W | - | - | 14 Hz | - | - | - | [124] |
Ti6Al4V | 2.45–3.43 GPa | - | - | - | - | - | - | 500–18,000 | - | [146] |
Cp-Ti | untreated material: 1.08 GPa | [122] | ||||||||
2.59 GPa | Nd: YAG | 100 W | - | 5 ms | 20 Hz | 8 mm/s | - | - |
6. Wear Resistance and Fatigue Behavior
7. Conclusions
- The first section focused on the surface roughness and wettability, allowing us to assess the impact of laser modification with different types of lasers, which led to the conclusion that the use of this type of modification increases the surface roughness and that it varies depending on the operating parameters of the lasers.
- The wettability of a surface is a topic that is widely discussed due to the fact that laser modification affects the change in the nature of the surface. Notably, a large impact on the hydrophilicity or hydrophobicity of a surface is the timing of the test in this direction, as well as the environment in which the samples are stored, but depending on the application of the material, there are different requirements, which does not indicate a more advantageous character.
- Collected publications in the field of corrosion resistance research determine that the action of a laser beam on titanium materials improves the corrosion resistance, which is important because this reduces the release of dangerous elements from the implants.
- Laser modification alters the micro- and nano-hardness for each type of laser. It is indicated that laser modification allows the process to be carried out in such a way that the hardness obtained after the change is close to that of bone.
- The effect of laser modification on material wear was presented based on a collection of literature from a wide time range, which allowed the presentation of further opportunities to discuss the selection of optimal laser operating parameters, such as the laser operating power, laser beam density, and pulse duration.
- In addition, the aspect of wear resistance was discussed, where it was shown that the use of laser modification improves this material property.
- The presented review of the current literature on the subject provides a theoretical basis for studying the effects of laser processing on titanium and its biostops and for conducting targeted processing in the area where modification is needed to improve implants.
- The presented review of the current literature related to the effects of laser modification on selected properties of titanium materials and provides a theoretical basis for the researchers’ research.
- The review indicates the need to deepen the research related to the wettability of the surface of titanium materials used in biomedicine, due to the fact that there is no clear indication of which character of the surface is more favorable, and it is necessary to identify the areas of application of a hydrophobic and hydrophilic surface obtained by modification. In addition, it is important to focus on studies related to the durability of materials against wear and fatigue and corrosion because these two properties directly affect the length of stay of an implant in the body.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandyopadhyay, A.; Sahasrabudhe, H.; Bose, S. Laser Surface Modification of Metallic Biomaterials; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081009420. [Google Scholar]
- Ardila-Rodríguez, L.A.; Menezes, B.R.C.; Pereira, L.A.; Takahashi, R.J.; Oliveira, A.C.; Travessa, D.N. Surface Modification of Aluminum Alloys with Carbon Nanotubes by Laser Surface Melting. Surf. Coat. Technol. 2019, 377, 1–11. [Google Scholar] [CrossRef]
- Landowski, M. Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel. Adv. Mater. Sci. 2019, 19, 1–11. [Google Scholar] [CrossRef]
- Mao, B.; Siddaiah, A.; Liao, Y.; Menezes, P.L. Laser Surface Texturing and Related Techniques for Enhancing Tribological Performance of Engineering Materials: A Review. J. Manuf. Process. 2020, 53, 153–173. [Google Scholar] [CrossRef]
- Daskalova, A.; Angelova, L.; Carvalho, A.; Trifonov, A.; Nathala, C.; Monteiro, F.; Buchvarov, I. Effect of Surface Modification by Femtosecond Laser on Zirconia Based Ceramics for Screening of Cell-Surface Interaction. Appl. Surf. Sci. 2020, 513, 145914. [Google Scholar] [CrossRef]
- Yang, L.; Ding, Y.; Cheng, B.; He, J.; Wang, G.; Wang, Y. Investigations on Femtosecond Laser Modified Micro-Textured Surface with Anti-Friction Property on Bearing Steel GCr15. Appl. Surf. Sci. 2018, 434, 831–842. [Google Scholar] [CrossRef]
- Temmler, A.; Walochnik, M.A.; Willenborg, E.; Wissenbach, K. Surface Structuring by Remelting of Titanium Alloy Ti6Al4V. J. Laser Appl. 2015, 27, 1–7. [Google Scholar] [CrossRef]
- Laketić, S.; Rakin, M.; Momčilović, M.; Ciganović, J.; Veljović, Đ.; Cvijović-Alagić, I. Surface Modifications of Biometallic Commercially Pure Ti and Ti-13Nb-13Zr Alloy by Picosecond Nd:YAG Laser. Int. J. Miner. Metall. Mater. 2021, 28, 285–295. [Google Scholar] [CrossRef]
- Jażdewska, M.; Kwidzińska, D.B.; Seyda, W.; Fydrych, D.; Zieleiński, A. Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment. Materials 2021, 14, 6316. [Google Scholar] [CrossRef]
- Majkowska-Marzec, B.; Sypniewska, J. Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings. Adv. Mater. Sci. 2021, 21, 5–18. [Google Scholar] [CrossRef]
- Zieliński, A.; Jażdżewska, M.; Łubiński, J.; Serbiński, W. Effects of Laser Remelting at Cryogenic Conditions on Microstructure and Wear Resistance of the Ti6Al4V Alloy Applied in Medicine. Trans. Technol. Publ. 2012, 183, 215–224. [Google Scholar] [CrossRef]
- Lisiecki, A.; Klimpel, A. Diode Laser Surface Modification of Ti6Al4V Alloy to Improve Erosion Wear Resistance. Arch. Mater. Sci. Eng. 2008, 32, 5–12. [Google Scholar]
- Amaya-Vazquez, M.R.; Sánchez-Amaya, J.M.; Boukha, Z.; Botana, F.J. Microstructure, Microhardness and Corrosion Resistance of Remelted TiG2 and Ti6Al4V by a High Power Diode Laser. Corros. Sci. 2012, 56, 36–48. [Google Scholar] [CrossRef]
- Lisiecki, A. Hybrid Laser Deposition of Composite WC-Ni Layers with Forced Local Cryogenic Cooling. Materials 2021, 14, 4312. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Liang, H.; Xie, D.; Mao, Y.; Wang, C.; Shen, L.; Tian, Z. On the Role of Laser in Situ Re-Melting into Pore Elimination of Ti–6Al–4V Components Fabricated by Selective Laser Melting. J. Alloys Compd. 2021, 854, 156866. [Google Scholar] [CrossRef]
- Temmler, A.; Willenborg, E.; Wissenbach, K. Designing Surfaces by Laser Remelting Designing Surfaces by Laser Remelting. In Proceedings of the ICOMM 2012—International Conference on Micromanufacturing, Evanston, IL, USA, 12–14 March 2014. [Google Scholar] [CrossRef]
- Szkodo, M.; Bień, A.; Stanisławska, A. Laser Beam as a Precision Tool to Increase Fatigue Resistance in an Eyelet of Undercarriage Drag Strut. Int. J. Precis. Eng. Manuf.-Green Technol. 2022, 9, 175–190. [Google Scholar] [CrossRef]
- Ukar, E.; Lamikiz, A.; Martínez, S.; Arrizubieta, I. Laser Texturing with Conventional Fiber Laser. Procedia Eng. 2015, 132, 663–670. [Google Scholar] [CrossRef]
- Aragaw, E.M.; Gärtner, E.; Schubert, A.; Stief, P.; Dantan, J.; Etienne, A.; Siadat, A. ScienceDirect ScienceDirect Combined Laser Hardening and Laser Surface Texturing Forming Tool 1. 2379 Combined Laser Hardening and Laser Surface Texturing Existing Products for an Assembly Oriented Product Family Identification Methodology to Analyze The. Procedia CIRP 2020, 94, 914–918. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Muthukumaran, V.; Sathyabalan, P. A Study of the Effect of Process Parameters of Laser Hardening in Carbon Steels. Int. J. Civ. Eng. Technol. 2017, 8, 201–207. [Google Scholar]
- Poulon-Quintin, A.; Watanabe, I.; Watanabe, E.; Bertrand, C. Microstructure and Mechanical Properties of Surface Treated Cast Titanium with Nd:YAG Laser. Dent. Mater. 2012, 28, 945–951. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, W.; Zhang, G.; Li, Z.; Hu, H.; Wang, C.; Zeng, X.; Zhao, S.; Zhang, Y.; Ren, T. Friction Stability and Cellular Behaviors on Laser Textured Ti–6Al–4V Alloy Implants with Bioinspired Micro-Overlapping Structures. J. Mech. Behav. Biomed. Mater. 2020, 109, 1–14. [Google Scholar] [CrossRef]
- Braga, F.J.C.; Marques, R.F.C.; de Filho, E.A.; Guastaldi, A.C. Surface Modification of Ti Dental Implants by Nd:YVO 4 Laser Irradiation. Appl. Surf. Sci. 2007, 253, 9203–9208. [Google Scholar] [CrossRef]
- Menci, G.; Gökhan, A.; Waugh, D.G.; Lawrence, J.; Previtali, B. Applied Surface Science Laser Surface Texturing of β-Ti Alloy for Orthopaedics: Effect of Different Wavelengths and Pulse Durations. Appl. Surf. Sci. 2019, 489, 175–186. [Google Scholar] [CrossRef]
- Yadi, M.; Esfahani, H.; Sheikhi, M.; Mohammadi, M. CaTiO3/α-TCP Coatings on CP-Ti Prepared via Electrospinning and Pulsed Laser Treatment for in-Vitro Bone Tissue Engineering. Surf. Coat. Technol. 2020, 401, 126256. [Google Scholar] [CrossRef]
- Navarro, P.; Olmo, A.; Giner, M.; Rodríguez-Albelo, M.; Rodríguez, Á.; Torres, Y. Electrical Impedance of Surface Modified Porous Titanium Implants with Femtosecond Laser. Materials 2022, 15, 461. [Google Scholar] [CrossRef]
- Jażdżewska, M.; Majkowska-Marzec, B. Hydroxyapatite Deposition on the Laser Modified Ti13Nb13Zr Alloy. Adv. Mater. Sci. 2018, 17, 5–13. [Google Scholar] [CrossRef]
- Dywel, P.; Szczesny, R.; Domanowski, P.; Skowronski, L. Structural and Micromechanical Properties of Nd:YAG Laser Marking Stainless Steel (AISI 304 and AISI 316). Materials 2020, 13, 2168. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Takahashi, K.; Yamashita, Y. Application of Titanium and Its Alloys for Automobile Parts. Nippon Steel Tech. Rep. 2003, 02003, 70–75. [Google Scholar] [CrossRef]
- Assari, A.H.; Eghbali, B. Solid State Diffusion Bonding Characteristics at the Interfaces of Ti and Al Layers. J. Alloys Compd. 2019, 773, 50–58. [Google Scholar] [CrossRef]
- Tabie, V.M.; Li, C.; Saifu, W.; Li, J.; Xu, X. Mechanical Properties of near Alpha Titanium Alloys for High-Temperature Applications - a Review. Aircr. Eng. Aerosp. Technol. 2020, 92, 521–540. [Google Scholar] [CrossRef]
- Gomez-Gallegos, A.; Mandal, P.; Gonzalez, D.; Zuelli, N.; Blackwell, P. Studies on Titanium Alloys for Aerospace Application. Defect Diffus. Forum 2018, 385 DDF, 419–423. [Google Scholar] [CrossRef]
- Elshazli, A.M.; Elshaer, R.N.; Hussein, A.H.A.; Al-Sayed, S.R. Erratum: Elshazli et Al. Laser Surface Modification of TC21 (α/β) Titanium Alloy Using a Direct Energy Deposition (DED) Process. Micromachines 2021, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Khorasani, A.M.; Goldberg, M.; Doeven, E.H.; Littlefair, G. Titanium in Biomedical Applications—Properties and Fabrication: A Review. J. Biomater. Tissue Eng. 2015, 5, 593–619. [Google Scholar] [CrossRef]
- Laska, A. Parameters of the Electrophoretic Deposition Process and Its Influence on the Morphology of Hydroxyapatite Coatings. Review. Inżynieria Mater. 2020, 1, 20–25. [Google Scholar] [CrossRef]
- Watanabe, I.; McBride, M.; Newton, P.; Kurtz, K.S. Laser Surface Treatment to Improve Mechanical Properties of Cast Titanium. Dent. Mater. 2009, 25, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.A.; Johansson, M.L.; Omar, O.; Simonsson, H.; Palmquist, A.; Thomsen, P. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems. PLoS ONE 2016, 11, e0157504. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, H.; Takeuchi, Y.; Imai, H.; Kawai, T.; Yoneyama, T. Application of Titanium and Titanium Alloys to Fixed Dental Prostheses. J. Prosthodont. Res. 2019, 63, 266–270. [Google Scholar] [CrossRef]
- Wierzchoń, T. Modification of Titanium and Its Alloys Implants by Low Temperature Surface Plasma Treatments for Cardiovascular Applications. Inżynieria Mater. 2018, 1, 4–13. [Google Scholar] [CrossRef]
- Manjaiah, M.; Laubscher, R.F. A Review of the Surface Modifications of Titanium Alloys for Biomedical Applications. Mater. Tehnol. 2017, 51, 181–193. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Hagino, H. Formation of Titanium Carbide Layer by Laser Alloying with a Light-Transmitting Resin. Opt. Lasers Eng. 2017, 88, 13–19. [Google Scholar] [CrossRef]
- Piotrowska, K.; Madej, M.; Ozimina, D. Assessment of tribological properties of ti13nb13zr titanium alloy used in medicine. Tribologia 2019, 285, 97–106. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Reports 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Tian, Y.S.; Chen, C.Z.; Wang, D.Y.; Lei, T.Q. Laser surface modification of titanium alloys—A review. Surf. Eng. Light Alloy. Alum. Magnes. Titan. Alloy. 2010, 12, 398–443. [Google Scholar] [CrossRef]
- Sirdeshmukh, N.; Dongre, G. Laser Micro & Nano Surface Texturing for Enhancing Osseointegration and Antimicrobial Effect of Biomaterials: A Review. Mater. Today Proc. 2021, 44, 2348–2355. [Google Scholar] [CrossRef]
- Kurella, A.; Dahotre, N.B. Review Paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering. J. Biomater. Appl. 2005, 20, 1–25. [Google Scholar] [CrossRef]
- Xue, X.; Ma, C.; An, H.; Li, Y.; Guan, Y. Corrosion Resistance and Cytocompatibility of Ti-20Zr-10Nb-4Ta Alloy Surface Modified by a Focused Fiber Laser. Sci. China Mater. 2018, 61, 516–524. [Google Scholar] [CrossRef]
- Simões, I.G.; dos Reis, A.C.; da Costa Valente, M.L. Analysis of the Influence of Surface Treatment by High-Power Laser Irradiation on the Surface Properties of Titanium Dental Implants: A Systematic Review. J. Prosthet. Dent. 2021, 1–8. [Google Scholar] [CrossRef]
- Abdal-hay, A.; Staples, R.; Alhazaa, A.; Fournier, B.; Al-Gawati, M.; Lee, R.S.; Ivanovski, S. Fabrication of Micropores on Titanium Implants Using Femtosecond Laser Technology: Perpendicular Attachment of Connective Tissues as a Pilot Study. Opt. Laser Technol. 2022, 148, 107624. [Google Scholar] [CrossRef]
- Korovessis, P.G.; Deligianni, D.D. Role of Surface Roughness of Titanium Versus Hydroxyapatite on Human Bone Marrow Cells Response. J. Spinal Disord. Tech. 2002, 15, 175–183. [Google Scholar] [CrossRef]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and Its Alloys Biological Materials Science 46-49. Biol. Mater. Sci. 2008, 30, 46–49. [Google Scholar]
- Achneck, H.E.; Jamiolkowski, R.M.; Jantzen, A.E.; Haseltine, J.M.; Lane, W.O.; Huang, J.K.; Galinat, L.J.; Serpe, M.J.; Lin, F.H.; Li, M.; et al. The Biocompatibility of Titanium Cardiovascular Devices Seeded with Autologous Blood-Derived Endothelial Progenitor Cells. EPC-Seeded Antithrombotic Ti Implants. Biomaterials 2011, 32, 10–18. [Google Scholar] [CrossRef]
- Ramesh, S.; Karunamoorthy, L.; Palanikumar, K. Surface Roughness Analysis in Machining of Titanium Alloy. Mater. Manuf. Process. 2008, 23, 174–181. [Google Scholar] [CrossRef]
- Pires, L.C.; Guastaldi, F.P.S.; Nogueira, A.V.B.; Oliveira, N.T.C.; Guastaldi, A.C.; Cirelli, J.A. Physicochemical, Morphological, and Biological Analyses of Ti-15Mo Alloy Surface Modified by Laser Beam Irradiation. Lasers Med. Sci. 2019, 34, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Telegin, S.V.; Lyasnikova, A.V.; Dudareva, O.A.; Grishina, I.P.; Markelova, O.A.; Lyasnikov, V.N. Laser Modification of the Surface of Titanium: Technology, Properties, and Prospects of Application. J. Surf. Investig. 2019, 13, 228–231. [Google Scholar] [CrossRef]
- Lawrence, J.; Hao, L.; Chew, H.R. On the Correlation between Nd:YAG Laser-Induced Wettability Characteristics Modification and Osteoblast Cell Bioactivity on a Titanium Alloy. Surf. Coat. Technol. 2006, 200, 5581–5589. [Google Scholar] [CrossRef]
- Rafiee, K.; Naffakh-Moosavy, H.; Tamjid, E. The Effect of Laser Frequency on Roughness, Microstructure, Cell Viability and Attachment of Ti6Al4V Alloy. Mater. Sci. Eng. C 2020, 109, 110637. [Google Scholar] [CrossRef]
- Györgyey, Á.; Ungvári, K.; Kecskeméti, G.; Kopniczky, J.; Hopp, B.; Oszkó, A.; Pelsöczi, I.; Rakonczay, Z.; Nagy, K.; Turzó, K. Attachment and Proliferation of Human Osteoblast-like Cells ( MG-63 ) on Laser-Ablated Titanium Implant Material. Mater. Sci. Eng. C 2013, 33, 4251–4259. [Google Scholar] [CrossRef]
- Samanta, A.; Wang, Q.; Singh, G.; Shaw, S.K.; Toor, F.; Ratner, A.; Ding, H. Nanosecond Pulsed Laser Processing Turns Engineering Metal Alloys Antireflective and Superwicking. J. Manuf. Process. 2020, 54, 28–37. [Google Scholar] [CrossRef]
- Laketić, S.; Rakin, M.; Momčilović, M.; Ciganović, J.; Veljović, Đ.; Cvijović-Alagić, I. Influence of Laser Irradiation Parameters on the Ultrafine-Grained Ti[Sbnd]45Nb Alloy Surface Characteristics. Surf. Coat. Technol. 2021, 418, 127255. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, Y.; Li, X.; Dong, G. Pulse Laser-Induced Cell-like Texture on Surface of Titanium Alloy for Tribological Properties Improvement. Wear 2021, 477, 203784. [Google Scholar] [CrossRef]
- Zaifuddin, A.Q.; Zulhilmi, F.; Aiman, M.H.; Quazi, M.M.; Ishak, M. Enhancement of Laser Heating Process by Laser Surface Modification on Titanium Alloy. J. Mech. Eng. Sci. 2021, 15, 8310–8318. [Google Scholar] [CrossRef]
- Schnell, U.G.; Duenow, H.S. Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces. Materials 2020, 13, 969. [Google Scholar] [CrossRef] [PubMed]
- Eghbali, N.; Naffakh-Moosavy, H.; Sadeghi Mohammadi, S.; Naderi-Manesh, H. The Influence of Laser Frequency and Groove Distance on Cell Adhesion, Cell Viability, and Antibacterial Characteristics of Ti-6Al-4V Dental Implants Treated by Modern Fiber Engraving Laser. Dent. Mater. 2021, 37, 547–558. [Google Scholar] [CrossRef] [PubMed]
- György, E.; Pérez del Pino, A.; Serra, P.; Morenza, J.L. Influence of the Ambient Gas in Laser Structuring of the Titanium Surface. Surf. Coat. Technol. 2004, 187, 245–249. [Google Scholar] [CrossRef]
- El Mogahzy, Y.E. Finishing Processes for Fibrous Assemblies in Textile Product Design. Eng. Text. 2009, 300–326. [Google Scholar] [CrossRef]
- Zheng, Q.; Mao, L.; Shi, Y.; Fu, W.; Hu, Y. Biocompatibility of Ti-6Al-4V Titanium Alloy Implants with Laser Microgrooved Surfaces. Mater. Technol. 2020, 1–10. [Google Scholar] [CrossRef]
- Hao, L.; Lawrence, J.; Li, L. Manipulation of the Osteoblast Response to a Ti-6Al-4V Titanium Alloy Using a High Power Diode Laser. Appl. Surf. Sci. 2005, 247, 602–606. [Google Scholar] [CrossRef]
- Cunha, A.; Serro, A.P.; Oliveira, V.; Almeida, A.; Vilar, R.; Durrieu, M.C. Wetting Behaviour of Femtosecond Laser Textured Ti-6Al-4V Surfaces. Appl. Surf. Sci. 2013, 265, 688–696. [Google Scholar] [CrossRef]
- May, A.; Agarwal, N.; Lee, J.; Lambert, M.; Akkan, C.K.; Nothdurft, F.P.; Aktas, O.C. Laser Induced Anisotropic Wetting on Ti-6Al-4V Surfaces. Mater. Lett. 2015, 138, 21–24. [Google Scholar] [CrossRef]
- Raimbault, O.; Benayoun, S.; Anselme, K.; Mauclair, C.; Bourgade, T.; Kietzig, A.M.; Girard-Lauriault, P.L.; Valette, S.; Donnet, C. The Effects of Femtosecond Laser-Textured Ti-6Al-4V on Wettability and Cell Response. Mater. Sci. Eng. C 2016, 69, 311–320. [Google Scholar] [CrossRef]
- Rotella, G.; Orazi, L.; Alfano, M.; Candamano, S.; Gnilitskyi, I. Innovative High-Speed Femtosecond Laser Nano-Patterning for Improved Adhesive Bonding of Ti6Al4V Titanium Alloy. CIRP J. Manuf. Sci. Technol. 2017, 18, 101–106. [Google Scholar] [CrossRef]
- Lu, J.; Huang, T.; Liu, Z.; Zhang, X.; Xiao, R. Long-Term Wettability of Titanium Surfaces by Combined Femtosecond Laser Micro/Nano Structuring and Chemical Treatments. Appl. Surf. Sci. 2018, 459, 257–262. [Google Scholar] [CrossRef]
- Huerta-Murillo, D.; García-Girón, A.; Romano, J.M.; Cardoso, J.T.; Cordovilla, F.; Walker, M.; Dimov, S.S.; Ocaña, J.L. Wettability Modification of Laser-Fabricated Hierarchical Surface Structures in Ti-6Al-4V Titanium Alloy. Appl. Surf. Sci. 2019, 463, 838–846. [Google Scholar] [CrossRef]
- Shaikh, S.; Kedia, S.; Singh, D.; Subramanian, M.; Sinha, S. Surface Texturing of Ti6Al4V Alloy Using Femtosecond Laser for Superior Antibacterial Performance. J. Laser Appl. 2019, 31, 5081106. [Google Scholar] [CrossRef]
- Dou, H.Q.; Liu, H.; Xu, S.; Chen, Y.; Miao, X.; Lü, H.; Jiang, X. Influence of Laser Fluences and Scan Speeds on the Morphologies and Wetting Properties of Titanium Alloy. Optik (Stuttg) 2020, 224, 165443. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Zhu, Z.; Xiang, N.; Wang, Z.; Sun, G. Switchable Wettability Control of Titanium via Facile Nanosecond Laser-Based Surface Texturing. Surf. Interfaces 2021, 24, 101122. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dhara, S.; Saha, P. Enhanced Corrosion, Tribocorrosion Resistance and Controllable Osteogenic Potential of Stem Cells on Micro-Rippled Ti6Al4V Surfaces Produced by Pulsed Laser Remelting. J. Manuf. Process. 2021, 65, 119–133. [Google Scholar] [CrossRef]
- Wang, Z.; Song, J.; Wang, T.; Wang, H. Laser Texturing for Superwetting Titanium Alloy and Investigation of Its Erosion Resistance. Coatings 2021, 11, 1547. [Google Scholar] [CrossRef]
- Singh, I.; George, S.M.; Tiwari, A.; Ramkumar, J.; Balani, K. Influence of Laser Surface Texturing on the Wettability and Antibacterial Properties of Metallic, Ceramic, and Polymeric Surfaces. J. Mater. Res. 2021, 36, 3985–3999. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, J.; Wang, B.; Breisch, M.; Hartmaier, A.; Rostotskyi, I.; Voznyy, V.; Liu, Y. Experimental Investigation of Laser Surface Texturing and Related Biocompatibility of Pure Titanium. Int. J. Adv. Manuf. Technol. 2022. [Google Scholar] [CrossRef]
- Tęczar, P.; Majkowska-Marzec, B. The influence of laser alloying of ti13nb13zr on surface topography and properties. Adv. Mater. Sci. 2019, 19, 45–55. [Google Scholar] [CrossRef]
- Ta, D.V.; Dunn, A.; Wasley, T.J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Connaughton, C.; Shephard, J.D. Nanosecond Laser Textured Superhydrophobic Metallic Surfaces and Their Chemical Sensing Applications. Appl. Surf. Sci. 2015, 357, 248–254. [Google Scholar] [CrossRef]
- Liu, K.; Yao, X.; Jiang, L. Recent Developments in Bio-Inspired Special Wettability. Chem. Soc. Rev. 2010, 39, 3240–3255. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Dhara, S.; Saha, P. Laser Surface Remelting of Ti and Its Alloys for Improving Surface Biocompatibility of Orthopaedic Implants. Mater. Technol. 2018, 33, 106–118. [Google Scholar] [CrossRef]
- De Oliveira, V.M.C.A.; Aguiar, C.; Vazquez, A.M.; Robin, A.L.M.; Barboza, M.J.R. Corrosion Behavior Analysis of Plasma-Assited PVD Coated Ti-6Al-4V Alloy in 2 M NaOH Solution. Mater. Res. 2017, 20, 436–444. [Google Scholar] [CrossRef]
- Dinu, M.; Franchi, S.; Pruna, V.; Cotrut, C.M.; Secchi, V.; Santi, M.; Titorencu, I.; Battocchio, C.; Iucci, G.; Vladescu, A. Ti-Nb-Zr System and Its Surface Biofunctionalization for Biomedical Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128124567. [Google Scholar]
- Supernak-Marczewska, M.; Ossowska, A.; Strąkowska, P.; Zieliński, A. Nanotubular Oxide Layers and Hydroxyapatite Coatings on Porous Titanium Alloy Ti13Nb13Zr. Adv. Mater. Sci. 2018, 18, 17–23. [Google Scholar] [CrossRef]
- Ferdinandov, N.V.; Gospodinov, D.D.; Ilieva, M.D.; Radev, R.H. Structure and Pitting Corrosion of Ti-6al-4v Alloy and Ti-6al-4v Welds. ICAMS Proc. Int. Conf. Adv. Mater. Syst. 2018, 325–330. [Google Scholar] [CrossRef]
- Gu, K.X.; Wang, K.K.; Zheng, J.P.; Chen, L.B.; Wang, J.J. Electrochemical Behavior of Ti–6Al–4V Alloy in Hank’s Solution Subjected to Deep Cryogenic Treatment. Rare Met. 2018. [Google Scholar] [CrossRef]
- Wang, Y.; Tayyebi, M.; Assari, A. Fracture Toughness, Wear, and Microstructure Properties of Aluminum/Titanium/Steel Multi-Laminated Composites Produced by Cross-Accumulative Roll-Bonding Process. Arch. Civ. Mech. Eng. 2022, 22, 1–14. [Google Scholar] [CrossRef]
- Çaha, I.; Alves, A.C.; Rocha, L.A.; Toptan, F. A Review on Bio-Functionalization of β-Ti Alloys. J. Bio-Tribo-Corrosion 2020, 6, 1–31. [Google Scholar] [CrossRef]
- Dias Corpa Tardelli, J.; Bolfarini, C.; Cândido dos Reis, A. Comparative Analysis of Corrosion Resistance between Beta Titanium and Ti-6Al-4V Alloys: A Systematic Review. J. Trace Elem. Med. Biol. 2020, 62, 126618. [Google Scholar] [CrossRef]
- Pawłowski, Ł.; Bartmański, M.; Mielewczyk-Gryń, A.; Zieliński, A. Effects of Surface Pretreatment of Titanium Substrates on Properties of Electrophoretically Deposited Biopolymer Chitosan/Eudragit e 100 Coatings. Coatings 2021, 11, 1120. [Google Scholar] [CrossRef]
- Surma, M.K.; Adach, M.; Dębowska, P.; Turlej, P.S. Projekt i analiza obliczeniowa implantU. Aktual. Probl. Biomech. 2019, 111–122. [Google Scholar]
- Bartmański, M.; Pawłowski, Ł.; Zieliński, A.; Mielewczyk-Gryń, A.; Strugała, G.; Cieślik, B. Electrophoretic Deposition and Characteristics of Chitosan-Nanosilver Composite Coatings on a Nanotubular TiO2 Layer. Coatings 2020, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and Its Prevention-A Review. Recent Pat. Corros. Sci. 2010, 2, 40–54. [Google Scholar] [CrossRef]
- Boinovich, L.B.; Gnedenkov, S.V.; Alpysbaeva, D.A.; Egorkin, V.S.; Emelyanenko, A.M.; Sinebryukhov, S.L.; Zaretskaya, A.K. Corrosion Resistance of Composite Coatings on Low-Carbon Steel Containing Hydrophobic and Superhydrophobic Layers in Combination with Oxide Sublayers. Corros. Sci. 2012, 55, 238–245. [Google Scholar] [CrossRef]
- Stepanovska, J.; Matejka, R.; Rosina, J.; Bacakova, L.; Kolarova, H. Treatments for Enhancing the Biocompatibility of Titanium Implants. Biomed. Pap. 2020, 164, 23–33. [Google Scholar] [CrossRef]
- Gil, F.J.; Delgado, L.; Espinar, E.; Llamas, J.M. Corrosion and Corrosion-Fatigue Behavior of Cp-Ti and Ti-6Al-4V Laser-Marked Biomaterials. J. Mater. Sci. Mater. Med. 2012, 23, 885–890. [Google Scholar] [CrossRef]
- Tayyebi, M.; Adhami, M.; Karimi, A.; Rahmatabadi, D.; Alizadeh, M.; Hashemi, R. Effects of Strain Accumulation and Annealing on Interfacial Microstructure and Grain Structure (Mg and Al3Mg2 Layers) of Al/Cu/Mg Multilayered Composite Fabricated by ARB Process. J. Mater. Res. Technol. 2021, 14, 392–406. [Google Scholar] [CrossRef]
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Surface Modifications of Titanium Materials for Developing Corrosion Behavior in Human Body Environment: A Review. Procedia Mater. Sci. 2014, 6, 1610–1618. [Google Scholar] [CrossRef]
- Nagle Travessa, D.; Vilas Boas Guedes, G.; Capella de Oliveira, A.; Regina Cardoso, K.; Roche, V.; Moreira Jorge, A. The Effect of Surface Laser Texturing on the Corrosion Performance of the Biocompatible β-Ti12Mo6Zr2Fe Alloy. Surf. Coat. Technol. 2021, 405. [Google Scholar] [CrossRef]
- Zeng, C.; Wen, H.; Hemmasian Ettefagh, A.; Zhang, B.; Gao, J.; Haghshenas, A.; Raush, J.R.; Guo, S.M. Reoxidation Process and Corrosion Behavior of TA15 Alloy by Laser Ablation. Surf. Coat. Technol. 2020, 385, 125397. [Google Scholar] [CrossRef]
- Al-Sayed, S.R.; Abdelfatah, A. Corrosion Behavior of a Laser Surface-Treated Alpha–Beta 6/4 Titanium Alloy. Metallogr. Microstruct. Anal. 2020, 9, 553–560. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, S.K.; Mishra, S.K.; Dahotre, N.B. Electrochemical and Mechanical Behavior of Laser Processed Ti-6Al-4V Surface in Ringer’s Physiological Solution. J. Mater. Sci. Mater. Med. 2011, 22, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Scharnweber, T.; Pfleging, W.; Besser, H.; Majumdar, J.D. Laser Surface Textured Titanium Alloy (Ti-6Al-4V) - Part II - Studies on Bio-Compatibility. Appl. Surf. Sci. 2015, 357, 750–758. [Google Scholar] [CrossRef]
- Kuczyńska-Zemła, D.; Sotniczuk, A.; Pisarek, M.; Chlanda, A.; Garbacz, H. Corrosion Behavior of Titanium Modified by Direct Laser Interference Lithography. Surf. Coat. Technol. 2021, 418, 127219. [Google Scholar] [CrossRef]
- Sun, Z.; Annergren, I.; Pan, D.; Mai, T.A. Effect of Laser Surface Remelting on the Corrosion Behavior of Commercially Pure Titanium Sheet. Mater. Sci. Eng. A 2003, 345, 293–300. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Zhang, G.; Wang, G.; Zeng, Z.; Wang, C.; Wang, C.; Zhao, S.; Zhang, Y.; Ren, T. Electrochemical Corrosion and Anisotropic Tribological Properties of Bioinspired Hierarchical Morphologies on Ti-6Al-4V Fabricated by Laser Texturing. Tribol. Int. 2019, 134, 352–364. [Google Scholar] [CrossRef]
- Ali, N.; Mustapa, M.S.; Ghazali, M.I.; Sujitno, T.; Ridha, M. Fatigue Life Prediction of Commercially Pure Titanium after Nitrogen Ion Implantation. Int. J. Automot. Mech. Eng. 2013, 7, 1005–1013. [Google Scholar] [CrossRef]
- Liu, B.W.; Mi, G.Y.; Wang, C.M. Reoxidation Process and Corrosion Behavior of TA15 Alloy by Laser Ablation. Rare Met. 2021, 40, 865–876. [Google Scholar] [CrossRef]
- Baxter, J.W.; Bumby, J.R. Fuzzy Control of a Mobile Robotic Vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 1995, 209, 79–91. [Google Scholar] [CrossRef]
- Da Rocha, S.S.; Adabo, G.L.; Henriques, G.E.P.; Nóbilo, M.A.D.A. Vickers Hardness of Cast Commercially Pure Titanium and Ti-6Al-4V Alloy Submitted to Heat Treatments. Braz. Dent. J. 2006, 17, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Waddell, J.N.; Li, K.C.; A Sharma, L.; Prior, D.J.; Duncan, W.J. Is Titanium–Zirconium Alloy a Better Alternative to Pure Titanium for Oral Implant? Composition, Mechanical Properties, and Microstructure Analysis. Saudi Dent. J. 2021, 33, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Sharan, J.; Lale, S.V.; Koul, V.; Mishra, M.; Kharbanda, O.P. An Overview of Surface Modifications of Titanium and Its Alloys for Biomedical Applications. Trends Biomater. Artif. Organs 2015, 29, 176–187. [Google Scholar]
- Davis, R.; Singh, A.; Jackson, M.J.; Coelho, R.T.; Prakash, D.; Charalambous, C.P.; Ahmed, W.; da Silva, L.R.R.; Lawrence, A.A. A Comprehensive Review on Metallic Implant Biomaterials and Their Subtractive Manufacturing; Springer: London, UK, 2022; Volume 120, ISBN 0123456789. [Google Scholar]
- Pan, J.; Prabakaran, S.; Rajan, M. In-Vivo Assessment of Minerals Substituted Hydroxyapatite / Poly Sorbitol Sebacate Glutamate (PSSG) Composite Coating on Titanium Metal Implant for Orthopedic Implantation. Biomed. Pharmacother. 2019, 119, 109404. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, L.Y.; Wang, L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Adv. Eng. Mater. 2020, 22, 1–37. [Google Scholar] [CrossRef]
- Rossi, M.C.; Amado, J.M.; Tobar, M.J.; Vicente, A.; Yañez, A.; Amigó, V. Effect of Alloying Elements on Laser Surface Modification of Powder Metallurgy to Improve Surface Mechanical Properties of Beta Titanium Alloys for Biomedical Application. J. Mater. Res. Technol. 2021, 14, 1222–1234. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Klobčar, D.; Godec, M. Influence of Laser Texturing on Microstructure, Surface and Corrosion Properties of Ti-6al-4v. Metals 2020, 10, 1504. [Google Scholar] [CrossRef]
- Chai, L.; Wu, H.; Zheng, Z.; Guan, H.; Pan, H.; Guo, N.; Song, B. Microstructural Characterization and Hardness Variation of Pure Ti Surface-Treated by Pulsed Laser. J. Alloys Compd. 2018, 741, 116–122. [Google Scholar] [CrossRef]
- Pushp, P.; Dasharath, S.M.; Arati, C. Classification and Applications of Titanium and Its Alloys. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Khorram, A.; Davoodi Jamaloei, A.; Jafari, A. Surface Transformation Hardening of Ti-5Al-2.5Sn Alloy by Pulsed Nd:YAG Laser: An Experimental Study. Int. J. Adv. Manuf. Technol. 2019, 100, 3085–3099. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, Q.; Ma, X.; Wang, W.; Wang, K.; Shen, P.; Yang, J.; Wang, L. Effect of Laser Remelting on Microstructural Evolution and Mechanical Properties of Ti-35Nb-2Ta-3Zr Alloy. Mater. Lett. 2019, 253, 310–313. [Google Scholar] [CrossRef]
- Ushakov, I.; Simonov, Y. Alterations in the Microhardness of a Titanium Alloy Affected to a Series of Nanosecond Laser Pulses. MATEC Web Conf. 2019, 298, 00051. [Google Scholar] [CrossRef]
- Trueba, P.; Giner, M.; Rodríguez, Á.; Beltrán, A.M.; Amado, J.M.; Montoya-García, M.J.; Rodríguez-Albelo, L.M.; Torres, Y. Tribo-Mechanical and Cellular Behavior of Superficially Modified Porous Titanium Samples Using Femtosecond Laser. Surf. Coat. Technol. 2021, 422, 127555. [Google Scholar] [CrossRef]
- Omoniyi, P.O.; Akinlabi, E.T.; Mahamood, R.M. Heat Treatments of Ti6Al4V Alloys for Industrial Applications: An Overview. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012094. [Google Scholar] [CrossRef]
- Xu, Y.F.; Yi, D.Q.; Liu, H.Q.; Wang, B.; Yang, F.L. Age-Hardening Behavior, Microstructural Evolution and Grain Growth Kinetics of Isothermal ω Phase of Ti-Nb-Ta-Zr-Fe Alloy for Biomedical Applications. Mater. Sci. Eng. A 2011, 529, 326–334. [Google Scholar] [CrossRef]
- Zafari, A.; Barati, M.R.; Xia, K. Controlling Martensitic Decomposition during Selective Laser Melting to Achieve Best Ductility in High Strength Ti-6Al-4V. Mater. Sci. Eng. A 2019, 744, 445–455. [Google Scholar] [CrossRef]
- El-Hadad, S.; Nady, M.; Khalifa, W.; Shash, A. Influence of Heat Treatment Conditions on the Mechanical Properties of Ti–6Al–4V Alloy. Can. Metall. Q. 2018, 57, 186–193. [Google Scholar] [CrossRef]
- Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P. Microstructural Evolution and Mechanical Properties of Ti-Zr Beta Titanium Alloy after Laser Surface Remelting. J. Alloys Compd. 2014, 583, 43–47. [Google Scholar] [CrossRef]
- He, B.; Cheng, X.; Li, J.; Tian, X.J.; Wang, H.M. Effect of Laser Surface Remelting and Low Temperature Aging Treatments on Microstructures and Surface Properties of Ti-55511 Alloy. Surf. Coat. Technol. 2017, 316, 104–112. [Google Scholar] [CrossRef]
- Guo, B.; Jonas, J.J. Dynamic Transformation during the High Temperature Deformation of Titanium Alloys. J. Alloys Compd. 2021, 884, 161179. [Google Scholar] [CrossRef]
- Geng, Y.; McCarthy, É.; Brabazon, D.; Harrison, N. Ti6Al4V Functionally Graded Material via High Power and High Speed Laser Surface Modification. Surf. Coat. Technol. 2020, 398, 126085. [Google Scholar] [CrossRef]
- Moura, C.G.; Carvalho, O.; Gonçalves, L.M.V.; Cerqueira, M.F.; Nascimento, R.; Silva, F. Laser Surface Texturing of Ti-6Al-4V by Nanosecond Laser: Surface Characterization, Ti-Oxide Layer Analysis and Its Electrical Insulation Performance. Mater. Sci. Eng. C 2019, 104, 109901. [Google Scholar] [CrossRef] [PubMed]
- Vilar, R.; Almeida, A. Laser Surface Treatment of Biomedical Alloys; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081009420. [Google Scholar]
- Dai, J.; Wang, T.; Chai, L.; Hu, X.; Zhang, L.; Guo, N. Characterization and Correlation of Microstructure and Hardness of Ti–6Al–4V Sheet Surface-Treated by Pulsed Laser. J. Alloys Compd. 2020, 826, 154243. [Google Scholar] [CrossRef]
- Chai, L.; Chen, K.; Zhi, Y.; Murty, K.L.; Chen, L.Y.; Yang, Z. Nanotwins Induced by Pulsed Laser and Their Hardening Effect in a Zr Alloy. J. Alloys Compd. 2018, 748, 163–170. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, Q.; Ma, X.; Wang, W.; Wang, K.; Shen, P.; Yang, J. Microstructure and Mechanical Properties of Ti-35Nb-2Ta-3Zr Alloy by Laser Quenching. Front. Mater. 2019, 6, 318. [Google Scholar] [CrossRef]
- Pfleging, W.; Kumari, R.; Besser, H.; Scharnweber, T.; Majumdar, J.D. Laser Surface Textured Titanium Alloy (Ti-6Al-4V): Part 1 - Surface Characterization. Appl. Surf. Sci. 2015, 355, 104–111. [Google Scholar] [CrossRef]
- Chen, S.; Usta, A.D.; Eriten, M. Microstructure and Wear Resistance of Ti6Al4V Surfaces Processed by Pulsed Laser. Surf. Coat. Technol. 2017, 315, 220–231. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Jha, J.S.; Telrandhe, S.; Srinivas, V.; Gokhale, A.A.; Mishra, S.K. Laser Surface Treatment of α-β Titanium Alloy to Develop a β -Rich Phase with Very High Hardness. J. Mater. Process. Technol. 2021, 288, 116873. [Google Scholar] [CrossRef]
- Kashyap, V.; Ramkumar, P. Improved Oxygen Diffusion and Overall Surface Characteristics Using Combined Laser Surface Texturing and Heat Treatment Process of Ti6Al4V. Surf. Coat. Technol. 2022, 429, 127976. [Google Scholar] [CrossRef]
- Pan, X.; HE, W.; Cai, Z.; Wang, X.; Liu, P.; Luo, S.; Zhou, L. Investigations on Femtosecond Laser-Induced Surface Modification and Periodic Micropatterning with Anti-Friction Properties on Ti6Al4V Titanium Alloy. Chin. J. Aeronaut. 2022, 35, 521–537. [Google Scholar] [CrossRef]
- Rajesh, P.; Muraleedharan, C.V.; Komath, M.; Varma, H. Laser Surface Modification of Titanium Substrate for Pulsed Laser Deposition of Highly Adherent Hydroxyapatite. J. Mater. Sci. Mater. Med. 2011, 22, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Ranjith Kumar, G.; Rajyalakshmi, G. Role of Nano Second Laser Wavelength Embedded Recast Layer and Residual Stress on Electrochemical Corrosion of Titanium Alloy. Mater. Res. Express 2019, 6, 086583. [Google Scholar] [CrossRef]
- Utomo, E.P.; Herbirowo, S.; Puspasari, V.; Thaha, Y.N. Characteristics and Corrosion Behavior of Ti–30nb–5sn Alloys in Histidine Solution with Various Nacl Concentrations. Int. J. Corros. Scale Inhib. 2021, 10, 592–601. [Google Scholar] [CrossRef]
- Arrazola, P.J.; Garay, A.; Iriarte, L.M.; Armendia, M.; Marya, S.; Le Maître, F. Machinability of Titanium Alloys (Ti6Al4V and Ti555.3). J. Mater. Process. Technol. 2009, 209, 2223–2230. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Du, Y.; Dai, K.; Wu, H.; Wang, Q.; Liu, J.; Tang, Y. β-Ti Alloys for Orthopedic and Dental Applications: A Review of Progress on Improvement of Properties through Surface Modificatio. Coatings 2021, 11, 1446. [Google Scholar] [CrossRef]
- He, D.; Zheng, S.; Pu, J.; Zhang, G.; Hu, L. Improving Tribological Properties of Titanium Alloys by Combining Laser Surface Texturing and Diamond-like Carbon Film. Tribol. Int. 2015, 82, 20–27. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Faria, A.C.L.; Rodrigues, R.C.S.; Claro, A.P.R.A.; de Mattos, M.G.C.; Ribeiro, R.F. Wear Resistance of Experimental Titanium Alloys for Dental Applications. J. Mech. Behav. Biomed. Mater. 2011, 4, 1873–1879. [Google Scholar] [CrossRef]
- Vishnu, J.; Sankar, M.; Rack, H.J.; Rao, N.; Singh, A.K.; Manivasagam, G. Effect of Phase Transformations during Aging on Tensile Strength and Ductility of Metastable Beta Titanium Alloy Ti–35Nb–7Zr–5Ta-0.35O for Orthopedic Applications. Mater. Sci. Eng. A 2020, 779. [Google Scholar] [CrossRef]
- Qiu, C.; Liu, Q.; Ding, R. Significant Enhancement in Yield Strength for a Metastable Beta Titanium Alloy by Selective Laser Melting. Mater. Sci. Eng. A 2021, 816, 141291. [Google Scholar] [CrossRef]
- Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D. Laser Surface Alloying of Commercially Pure Titanium with Boron and Carbon. Opt. Lasers Eng. 2014, 57, 64–81. [Google Scholar] [CrossRef]
- Hatakeyama, M.; Masahashi, N.; Michiyama, Y.; Inoue, H.; Hanada, S. Wear Resistance of Surface-Modified TiNbSn Alloy. J. Mater. Sci. 2021, 56, 14333–14347. [Google Scholar] [CrossRef]
- Zhang, L.C.; Chen, L.Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1–29. [Google Scholar] [CrossRef]
- Salguero, J.; Del Sol, I.; Vazquez-Martinez, J.M.; Schertzer, M.J.; Iglesias, P. Effect of Laser Parameters on the Tribological Behavior of Ti6Al4V Titanium Microtextures under Lubricated Conditions. Wear 2019, 426–427, 1272–1279. [Google Scholar] [CrossRef]
- Wang, H.; Nett, R.; Gurevich, E.L. The Effect of Laser Nitriding on Surface Characteristics and Wear Resistance of NiTi Alloy with Low Power Fiber Laser. Appl. Sci. 2021, 11, 515. [Google Scholar] [CrossRef]
- Jiang, P.; He, X.L.; Li, X.X.; Yu, L.G.; Wang, H.M. Wear Resistance of a Laser Surface Alloyed Ti-6Al-4V Alloy. Surf. Coat. Technol. 2000, 130, 24–28. [Google Scholar] [CrossRef]
- Bahiraei, M.; Mazaheri, Y.; Sheikhi, M.; Heidarpour, A. Mechanism of TiC Formation in Laser Surface Treatment of the Commercial Pure Titanium Pre-Coated by Carbon Using PVD Process. J. Alloys Compd. 2020, 834, 155080. [Google Scholar] [CrossRef]
- Tabrizi, A.T.; Aghajani, H.; Saghafian, H.; Laleh, F.F. Correction of Archard Equation for Wear Behavior of Modified Pure Titanium. Tribol. Int. 2021, 155, 106772. [Google Scholar] [CrossRef]
- Veiko, V.P.; Odintsova, G.V.; Gazizova, M.Y.; Karlagina, Y.Y.; Manokhin, S.S.; Yatsuk, R.M.; Vasilkov, S.D.; Kolobov, Y.R. The Influence of Laser Micro- and Nanostructuring on the Wear Resistance of Grade-2 Titanium Surface. Laser Phys. 2018, 28. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, W.; Yamaguchi, T.; Nishio, K. Characteristics of Surface Modified Ti-6Al-4V Alloy by a Series of YAG Laser Irradiation. Opt. Laser Technol. 2018, 98, 106–112. [Google Scholar] [CrossRef]
- Mohazzab, B.F.; Jaleh, B.; Fattah-alhosseini, A.; Mahmoudi, F.; Momeni, A. Laser Surface Treatment of Pure Titanium: Microstructural Analysis, Wear Properties, and Corrosion Behavior of Titanium Carbide Coatings in Hank’s Physiological Solution. Surf. Interfaces 2020, 20, 100597. [Google Scholar] [CrossRef]
- Jia, W.; Hong, Q.; Zhao, H.; Li, L.; Han, D. Effect of Laser Shock Peening on the Mechanical Properties of a Near-α Titanium Alloy. Mater. Sci. Eng. A 2014, 606, 354–359. [Google Scholar] [CrossRef]
- Jia, W.; Zan, Y.; Mao, C.; Li, S.; Zhou, W.; Li, Q.; Zhang, S.; Ji, V. Microstructure Evolution and Mechanical Properties of a Lamellar Near-α Titanium Alloy Treated by Laser Shock Peening. Vacuum 2021, 184, 109906. [Google Scholar] [CrossRef]
- Langlade, C.; Vannes, A.B.; Krafft, J.M.; Martin, J.R. Surface Modification and Tribological Behaviour of Titanium and Titanium Alloys after YAG-Laser Treatments. Surf. Coat. Technol. 1998, 100–101, 383–387. [Google Scholar] [CrossRef]
- Vadiraj, A.; Kamaraj, M. Fretting Fatigue Behavior of Surface Modified Biomedical Titanium Alloys. Trans. Indian Inst. Met. 2010, 63, 217–223. [Google Scholar] [CrossRef]
- Vadiraj, A.; Kamaraj, M.; Kamachi Mudali, U.; Nath, A.K. Effect of Surface Modified Layers on Fretting Fatigue Damage of Biomedical Titanium Alloys. Mater. Sci. Technol. 2006, 22, 1119–1125. [Google Scholar] [CrossRef]
- Campanelli, L.C. A Review on the Recent Advances Concerning the Fatigue Performance of Titanium Alloys for Orthopedic Applications. J. Mater. Res. 2021, 36, 151–165. [Google Scholar] [CrossRef]
- dos Santos, A.; Campanelli, L.C.; Da Silva, P.S.C.P.; Vilar, R.; de Almeida, M.A.M.; Kuznetsov, A.; Achete, C.A.; Bolfarini, C. Influence of a Femtosecond Laser Surface Modification on the Fatigue Behavior of Ti-6Al4V ELI Alloy. Mater. Res. 2019, 22. [Google Scholar] [CrossRef]
- Potomati, F.; Campanelli, L.C.; Da Silva, P.S.C.P.; Simões, J.G.A.B.; de Lima, M.S.F.; Damião, Á.J.; Bolfarini, C. Assessment of the Fatigue Behavior of Ti-6Al-4V ELI Alloy with Surface Treated by Nd:YAG Laser Irradiation. Mater. Res. 2019, 22, 1–5. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Wang, L. Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
Laser | Material | Environment | Laser Output Energy | Voltage | Laser Pulse Duration | Irradiation Time | Scanning Speed | Frequency | Average Expansive Area | Fluency/ Power | Shot of Pulses | Roughness Parameters | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ti13Nb13Zr and CP-Ti | air/argon | 5; 30 mJ | - | 150 ps | 5s | - | 10 Hz | - | - | 50 | (Table 2) | [8] | |
Ti15Mo and cpTi grade 2 | - | - | - | - | - | 0–200 mm/s | 20–35 Hz | 14 mm2 | 1.9 J/cm3 | - | - | [54] | |
technically pure VT-1–00 titanium | Air | - | 250–400 V | 3–10 ms | - | - | 1–5 Hz | - | - | 1–5 | Ra = 3.95 μm Rz = 21.2 μm Rmax = 29.01 μm Sm = 91 μm | [55] | |
Nd: YAG | Ti6Al4V | - | - | - | - | - | 30 mm/min | - | - | 200 W | - | Ra = 0.45 μm | [56] |
Ti6Al4V | Argon | - | - | 7 ms | - | 1 mm/s | 1, 3, 5, 7, 10, 15, 20 Hz | - | average power 300 W; peak power 2.1 kW | - | Ra for 10 H z = 0.394 μm Ra for 7 H z = 0.127 Ra μm | ||
CP4) Ti rods | Air | - | - | - | - | - | - | - | 1–1.5 J/cm3 | 200, 300, 400 | - | [58] | |
Ti6Al4V | Air | 95 mJ | - | - | 120 ns | - | 10 Hz | - | 0.95 W | - | - | [59] | |
Ti45Nb | Air, argon, nitrogen | - | - | 150 ps | 5 ns; 15 s | - | 10 Hz | 7.1 × 10−4 cm2 | 0.13–0.38 J/cm2 | 50, 150 | (Table 2) | [60] |
Sample [60] | Ti4Nb | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Laser modification environment | Argon | Air | Nitrogen | |||||||||
Laser modifications parameters | 5 mJ 50 pulses | 5 mJ 150 pulses | 15 mJ 150 pulses | 15 mJ 150 pulses | 5 mJ 50 pulses | 5 mJ 150 pulses | 15 mJ 150 pulses | 15 mJ 150 pulses | 5 mJ 50 pulses | 5 mJ 150 pulses | 15 mJ 150 pulses | 15 mJ 150 pulses |
Surface roughness [µm] | 1.026 | 2.053 | 1.414 | 3.062 | 0.551 | 0.921 | 0.884 | 0.949 | 0.839 | 1.148 | 0.647 | 0.804 |
Sample [8] | Ti13Nb13Zr | |||||||||||
Laser modification environment | Air | Argon | ||||||||||
Laser modifications parameters | 5 mJ 5 s | 30 mJ 5 s | 5 mJ 5 s | 30 mJ 5 s | ||||||||
Surface roughness [µm] | 0.428 | 0.988 | 0.701 | 1.366 | ||||||||
Sample [8] | CP-Ti | |||||||||||
Laser modification environment | Air | Argon | ||||||||||
Laser modifications parameters | 5 mJ 5 s | 30 mJ 5 s | 5 mJ 5 s | 30 mJ 5 s | ||||||||
Surface roughness [µm] | 0.258 | 0.931 | 0.927 | 1.842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sypniewska, J.; Szkodo, M. Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review. Coatings 2022, 12, 1371. https://doi.org/10.3390/coatings12101371
Sypniewska J, Szkodo M. Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review. Coatings. 2022; 12(10):1371. https://doi.org/10.3390/coatings12101371
Chicago/Turabian StyleSypniewska, Joanna, and Marek Szkodo. 2022. "Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review" Coatings 12, no. 10: 1371. https://doi.org/10.3390/coatings12101371
APA StyleSypniewska, J., & Szkodo, M. (2022). Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review. Coatings, 12(10), 1371. https://doi.org/10.3390/coatings12101371