Tribological Behavior of High Entropy Alloy Coatings: A Review
Abstract
:1. Introduction
2. Preparation Technologies
2.1. Laser Cladding
2.2. Magnetron Sputtering
2.3. Thermal Spraying
2.4. Electrochemical Deposition
2.5. Other Techniques and Brief Summary of Preparation Technologies
3. Composition and Microstructures
3.1. Prediction for Phase Structure
3.2. HEA Coatings
3.3. HEA Films
3.4. HEA Nitride, Carbide, and Oxide Films
4. Tribological Behavior
4.1. Tribological Behavior of Laser Cladding Coatings
4.2. Tribological Behavior of Thermal Spraying Coatings
4.3. Tribological Behavior of Magnetron Sputtering Films
5. Conclusions and Suggestion
- (1)
- The literature on modeling and simulation of the tribological properties of HEA coatings and films are very limited. A more atomistic understanding is helpful to elucidate the tribological mechanism of HEA and guide the development of new HEA structures with superior wear resistance and friction reduction.
- (2)
- There are few studies on the tribological properties of HEA composite coatings/films. Through the interface structure design, materials with different performance characteristics can be combined with each other, which can further improve the strength and toughness of materials and obtain more fatigue-resistant and stable HEA coatings/films.
- (3)
- The research on self-lubricating system of HEA is far less than that on enhancing its wear resistance. Therefore, the metal self-lubricating material system can be further expanded by referring to the experience of traditional self-lubricating composite materials, e.g., incorporating Ag, two-dimensional material graphene, and metal compound MoS2, etc.
- (4)
- The tribological performance of HEA films in severe environments needs clarification, such as high/low-temperature, corrosion, vacuum, and other conditions, the data accumulation of which can promote the practical application of HEA coating/films in various environments.
- (5)
- It is necessary to develop new preparation technology that is more suitable for large-scale industrial production and to promote the development of customized performance and production automation of HEA coatings and films in practical applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khadem, M.; Penkov, O.V.; Yang, H.K.; Kim, D.E. Tribology of multilayer coatings for wear reduction: A review. Friction 2017, 5, 248–262. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Cheng, J.; Qiao, Z.H.; Yang, J. High temperature solid-lubricating materials: A review. Tribol. Int. 2019, 133, 206–223. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Hua, D.P.; Xia, Q.S.; Wang, W.; Zhou, Q.; Li, S.; Qian, D.; Shi, J.Q.; Wang, H.F. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. Int. J. Plast. 2021, 142, 102997. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-entropy alloys: A critical review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wang, Y.F.; Huang, Z.B.; Zhou, Q.; Wang, H.F. Tribocorrosion Behavior of CoCrNi Medium Entropy Alloy in Simulated Seawater. Metals 2022, 12, 401. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, Y.; Ma, H.; Sologubenko, A.S.; Maeder, X.; Splolenak, R.; Wheeler, J.M. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness. Scr. Mater. 2019, 168, 51–55. [Google Scholar] [CrossRef]
- Jia, Q.; He, W.H.; Hua, D.P.; Zhou, Q.; Du, Y.; Ren, Y.; Lu, Z.B.; Wang, H.F.; Zhou, F.; Wang, J. Effects of structure relaxation and surface oxidation on nanoscopic wear behaviors of metallic glass. Acta Mater. 2022, 232, 117934. [Google Scholar] [CrossRef]
- Kasar, A.K.; Scalaro, K.; Menezes, P.L. Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range—A Review. Materials 2021, 14, 5814. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Zhou, Q.; Zhang, F.; Han, W.C.; Du, Y.; Hua, K.; Wang, H.F. Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribol. Int. 2021, 160, 107031. [Google Scholar] [CrossRef]
- Pei, X.H.; Du, Y.; Hao, X.X.; Wang, H.M.; Zhou, Q.; Wu, H.X.; Wang, H.F. Microstructure and tribological properties of TiZrV0.5Nb0.5Alx refractory high entropy alloys at elevated temperature. Wear 2021, 488, 204166. [Google Scholar] [CrossRef]
- Qiu, X.W.; Liu, C.G. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J. Alloys Compd. 2013, 553, 216–220. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.Z.; Pan, Y.; Guo, S. Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy. J. Alloys Compd. 2014, 600, 210–214. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, Y.; Ren, Y.; Kuang, W.W.; Han, W.C.; Wang, H.F.; Huang, P.; Wang, F.; Wang, J. Investigation into nanoscratching mechanical performance of metallic glass multilayers with improved nano-tribological properties. J. Alloys Compd. 2019, 776, 447–459. [Google Scholar] [CrossRef]
- Zou, Y.; Wheeler, J.M.; Ma, H.; Okle, P.; Spolenak, R. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability. Nano Lett. 2017, 17, 1569–1574. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Murty, B.S.; Berndt, C.C.; Kottada, R.S.; Ang, A.S.M. Thermal Spray High-Entropy Alloy Coatings: A Review. J. Therm. Spray Technol. 2020, 29, 857–893. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Luzin, V.; Schulz, C.; Hall, C.; Murty, B.S.; Kottada, R.S.; Berndt, C.C.; Ang, A.S.M. Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings. J. Alloys Compd. 2020, 854, 157140. [Google Scholar] [CrossRef]
- Soare, V.; Burada, M.; Constantin, I.; Mitrica, D.; Badilita, V.; Caragea, A.; Tarcolea, M. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl. Surf. Sci. 2015, 358, 533–539. [Google Scholar] [CrossRef]
- Yao, C.Z.; Zhang, P.; Liu, M.; Li, G.R.; Ye, J.Q.; Liu, P.; Tong, Y.X. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim. Acta 2008, 53, 8359–8365. [Google Scholar] [CrossRef]
- Pu, G.; Lin, L.W.; Ang, R.; Zhang, K.; Liu, B.; Liu, B.; Peng, T.; Liu, S.F.; Li, Q.R. Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1.5CoCrFeNi high entropy alloy films under He ion irradiation. Appl. Surf. Sci. 2020, 516, 146129. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.; Wang, L.; Liu, C.H.; Chang, H.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/ (AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation. Appl. Surf. Sci. 2019, 485, 108–118. [Google Scholar] [CrossRef]
- Mohanty, A.; Sampreeth, J.K.; Bembalge, O.; Hascoet, J.Y.; Marya, S.; Immanuel, R.J.; Panigrahi, S.K. High temperature oxidation study of direct laser deposited Al-x CoCrFeNi (X = 0.3, 0.7) high entropy alloys. Surf. Coat. Technol. 2019, 380, 125028. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, C.H.; Yang, J.J.; Zhang, W.; He, L.X.; Zhang, R.Q.; Yang, H.Y.; Wang, J.; Long, J.P.; Chang, H. Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding. Surf. Coat. Technol. 2021, 417, 127228. [Google Scholar] [CrossRef]
- Lo, W.L.; Hsu, S.Y.; Lin, Y.C.; Tsai, S.Y.; Lai, Y.T.; Duh, J.G. Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias. Surf. Coat. Technol. 2020, 401, 126247. [Google Scholar] [CrossRef]
- Gerard, A.Y.; Han, J.; McDonnell, S.J.; Ogle, K.; Kautz, E.J.; Schreiber, D.K.; Lu, P.; Saal, J.E.; Frankel, G.S.; Scully, J.R. Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Ca10: Unexpected high Cr enrichment within the passive film. Acta Mater. 2020, 198, 121–133. [Google Scholar] [CrossRef]
- Xu, Y.K.; Li, Z.Y.; Liu, J.R.; Chen, Y.N.; Zhang, F.Y.; Wu, L.; Hao, J.M.; Liu, L. Microstructure Evolution and Properties of Laser Cladding CoCrFeNiTiAlx High-Entropy Alloy Coatings. Coatings 2020, 10, 373. [Google Scholar] [CrossRef]
- Luo, D.W.; Zhou, Q.; Ye, W.T.; Ren, Y.; Greiner, C.; He, Y.X.; Wang, H.F. Design and Characterization of Self-Lubricating Refractory High Entropy Alloy-Based Multilayered Films. ACS Appl. Mater. Interfaces 2021, 13, 55712–55725. [Google Scholar] [CrossRef]
- Chen, L.J.; Bobzin, K.; Zhou, Z.; Zhao, L.D.; Ote, M.; Konigstein, T.; Tan, Z.; He, D.Y. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf. Coat. Technol. 2019, 358, 215–222. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Pan, Y.; He, Y.Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2010, 32, 1910–1915. [Google Scholar] [CrossRef]
- Kim, J.D.; Peng, Y. Melt pool shape and dilution of laser cladding with wire feeding. J. Mater. Process. Technol. 2000, 104, 284–293. [Google Scholar] [CrossRef]
- Cai, Y.C.; Chen, Y.; Manladan, S.M.; Luo, Z.; Gao, F.; Li, L. Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating. Mater. Des. 2018, 142, 124–137. [Google Scholar] [CrossRef]
- Yue, T.M.; Xie, H.; Lin, X.; Yang, H.O.; Meng, G.H. Solidification behavior in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates. J. Alloys Compd. 2013, 587, 588–593. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Zhao, Y.L.; Hsu, Y.C.; Li, C.L.; Kai, J.J.; Liu, C.T.; Hsueh, C.H. High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins. Int. J. Plast. 2020, 131, 102726. [Google Scholar] [CrossRef]
- Zou, Y.; Ma, H.; Spolenak, R. Ultrastrong ductile and stable high-entropy alloys at small scales. Nat. Commun. 2015, 6, 7748. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Srivastava, M.; Jadhav, M.; Chethan Chakradhar, R.P.S.; Muniprakash, M.; Singh, S. Synthesis and properties of high velocity oxy-fuel sprayed FeCoCrNi2Al high entropy alloy coating. Surf. Coat. Technol. 2019, 378, 124950. [Google Scholar] [CrossRef]
- Yin, S.; Li, W.Y.; Song, B.; Yan, X.C.; Kuang, M.; Xu, Y.X.; Wen, K.; Lupoi, R. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J. Mater. Sci. Technol. 2018, 35, 1003–1007. [Google Scholar] [CrossRef]
- Yoosefan, F.; Ashrafi, A.; Vaghefi, S.M.M. Characterization of Co–Cr–Fe–Mn–Ni High-Entropy Alloy Thin Films Synthesized by Pulse Electrodeposition: Part 2: Effect of Pulse Electrodeposition Parameters on the Wettability and Corrosion Resistance. Met. Mater. Int. 2020, 27, 106–117. [Google Scholar] [CrossRef]
- Popescu, A.M.J.; Branzoi, F.; Constantin, I.; Anastasescu, M.; Burada, M.; Mitrica, D.; Anasiei, I.; Olaru, M.T.; Constantin, V. Electrodeposition, Characterization, and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings 2021, 11, 1367. [Google Scholar] [CrossRef]
- Gao, P.H.; Fu, R.T.; Chen, B.Y.; Zeng, S.C.; Zhang, B.; Yang, Z.; Guo, Y.C.; Liang, M.X.; Li, J.P.; Lu, Y.Q.; et al. Corrosion Resistance of CoCrFeNiMn High Entropy Alloy Coating Prepared through Plasma Transfer Arc Claddings. Metals 2021, 11, 1876. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Yakushchenko, I.V.; Bondar, O.V.; Krause-Rehberg, R.; Abadias, G.; Chartier, P.; Oyoshi, K.; Takeda, Y.; Beresnev, V.M. Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb) N coatings under different deposition conditions. Mater. Chem. Phys. 2014, 147, 1079–1091. [Google Scholar] [CrossRef]
- Chandrakant Reddy, N.S.; Panigrahi, B.B. Electro spark coating of AlCoCrFeNi high entropy alloy on AISI410 stainless steel. Mater. Lett. 2021, 304, 130580. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Han, B.; Li, M.Y.; Zhang, Q.; Hu, C.Y.; Niu, S.Y.; Li, Z.H.; Wang, Y. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating. Intermetallics 2021, 131, 107111. [Google Scholar] [CrossRef]
- Patel, P.; Alidokht, S.A.; Sharifi, N.; Roy, A.; Harrington, K.; Stoyanov, P.; Chromik, R.R.; Moreau, C. Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings. Therm. Spray Technol. 2022, 31, 1285–1301. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Liaw, P.K. Alloy Design and Properties Optimization of High-Entropy Alloys. JOM 2012, 64, 830–838. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Wang, Z.J.; Huang, Y.H.; Yang, Y.; Wang, J.C.; Liu, C.T. Atomic-size effect and solid solubility of multicomponent alloys. Scr. Mater. 2014, 94, 28–31. [Google Scholar] [CrossRef]
- Yeh, J.W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Guo, S.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. 2011, 21, 433–446. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta. Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Ye, F.Z.; Jiao, Z.P.; Yan, S.; Guo, L.; Feng, L.Z.; Yu, J.X. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer. Vacuum 2020, 174, 109178. [Google Scholar] [CrossRef]
- Xiang, K.; Chen, L.Y.; Chai, L.J.; Guo, N.; Wang, H. Microstructural characteristics and properties of CoCrFeNiNbx high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding. Appl. Surf. Sci. 2020, 517, 146214. [Google Scholar] [CrossRef]
- Xiao, J.K.; Wu, Y.Q.; Chen, J.; Zhang, C. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 2020, 448, 203209. [Google Scholar] [CrossRef]
- Huang, Y.M.; Wang, Z.Y.; Xu, Z.Z.; Zang, X.M.; Chen, X.G. Microstructure and properties of TiNbZrMo high entropy alloy coating. Mater. Lett. 2020, 285, 129004. [Google Scholar] [CrossRef]
- Guo, Y.X.; Wang, H.L.; Liu, Q.B. Microstructure evolution and strengthening mechanism of laser-cladding MoFexCrTiWAlNby refractory high-entropy alloy coatings. J. Alloys Compd. 2020, 834, 155147. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.Y.; Hao, X.H.; Zhang, X.W.; Liu, H.X. Lightweight refractory high entropy alloy coating by laser cladding on Ti–6Al–4V surface. Vacuum 2020, 183, 109823. [Google Scholar] [CrossRef]
- Hu, M.; Cao, Q.P.; Wang, X.D.; Zhang, D.X.; Jiang, J.Z. Tuning nanostructure and mechanical property of Fe-Co-Ni-Cr-Mn high-entropy alloy thin films by substrate temperature. Mater Today Nano 2021, 15, 100130. [Google Scholar] [CrossRef]
- Cheng, C.J.; Zhang, X.F.; Hache, M.J.R.; Zou, Y. Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1−x high-entropy alloy thin films. Nano Res. 2021, 15, 4873–4879. [Google Scholar] [CrossRef]
- Feng, X.B.; Zhang, J.Y.; Xia, Z.R.; Fu, W.; Wu, K.; Liu, G.; Sun, J. Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater. Lett. 2018, 210, 84–87. [Google Scholar] [CrossRef]
- Wu, G.; Liu, C.; Brognara, A.; Ghidelli, M.; Bao, Y.; Liu, S.D.; Wu, X.X.; Xia, W.Z.; Zhao, H.; Rao, J.; et al. Symbiotic crystal-glass alloys via dynamic chemical partitioning. Mater. Today 2021, 51, 6–14. [Google Scholar] [CrossRef]
- Yoosefan, F.; Ashrafi, A.; Vaghefi, S.M.M.; Constantin, I. Synthesis of CoCrFeMnNi High Entropy Alloy Thin Films by Pulse Electrodeposition: Part 1: Effect of Pulse Electrodeposition Parameters. Met. Mater. Int. 2020, 26, 1262–1269. [Google Scholar] [CrossRef]
- Lewin, E. Multi-component and high-entropy nitride coatings—A promising field in need of a novel approach. J. Appl. Phys. 2020, 127, 16. [Google Scholar] [CrossRef]
- El Garah, M.; Touaibia, D.E.; Achache, S.; Michau, A.S.; Sviridova, E.M.; Postnikov, P.S.; Chehimi, M.M.; Schuster, F.; Sanchette, F. Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2022, 432, 128051. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, H.J.; Mun, S.C.; Jumaev, E.; Hong, S.H.; Song, G.; Kim, J.T.; Park, Y.K.; Kim, K.S.; Jeong, S.I.; et al. Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering. J. Alloys Compd. 2019, 797, 834–841. [Google Scholar] [CrossRef]
- Cui, P.P.; Li, W.; Liu, P.; Zhang, K.; Ma, F.C.; Chen, X.H.; Feng, R.; Liaw, P.K. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films. J. Alloys Compd. 2020, 834, 155063. [Google Scholar] [CrossRef]
- Chen, L.Q.; Li, W.; Liu, P.; Zhang, K.; Ma, F.C.; Chen, X.H.; Zhou, H.L.; Liu, X.K. Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum 2020, 181, 109706. [Google Scholar] [CrossRef]
- Mahieu, S.; Ghekiere, P.; Depla, D.; De Gryse, R. Biaxial alignment in sputter deposited thin films. Thin Solid Film. 2006, 515, 1229–1249. [Google Scholar] [CrossRef] [Green Version]
- Sha, C.H.; Zhou, Z.F.; Xie, Z.H.; Munroe, P. FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Appl. Surf. Sci. 2020, 507, 145101. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.D.; Li, G.; Gao, F.Y.; Xia, Y. Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering. Appl. Surf. Sci. 2021, 564, 150417. [Google Scholar] [CrossRef]
- Pelleg, J.; Zevin, L.Z.; Lungo, S.; Croitoru, N. Reactive-Sputter-Deposited TIN film on glass substrates. Thin Solid Film. 1991, 197, 117–128. [Google Scholar] [CrossRef]
- Malinovskis, P.; Fritze, S.; Riekehr, L.; von Fieandt, L.; Cedervall, J.; Rehnlund, D.; Nyholm, L.; Lewin, E.; Jansson, U. Synthesis and characterization of multicomponent (CrNbTaTiW)C films for increased hardness and corrosion resistance. Mater. Des. 2018, 149, 51–62. [Google Scholar] [CrossRef]
- Jhong, Y.S.; Huang, C.W.; Lin, S.J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr)Cx coatings. Mater. Chem. Phys. 2018, 210, 348–352. [Google Scholar] [CrossRef]
- Lee, S.; Chatain, D.; Liebscher, C.H.; Dehm, G. Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin films. Scr. Mater. 2021, 203, 114044. [Google Scholar] [CrossRef]
- Zhao, S.Q.; Wu, H.Y.; Yin, R.; Wang, X.N.; Zhong, H.Z.; Fu, Q.; Wan, W.J.; Cheng, T.; Shi, Y.; Cai, G.X.; et al. Preparation and electrocatalytic properties of (FeCrCoNiAl0.1)Ox high-entropy oxide and NiCo-(FeCrCoNiAl0.1)Ox heterojunction films. J. Alloys Compd. 2021, 868, 159108. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Li, Y.Z.; Shi, Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt. Laser Technol. 2021, 134, 106632. [Google Scholar] [CrossRef]
- Gu, Z.; Xi, S.Q.; Sun, C.F. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings. J. Alloys Compd. 2020, 819, 152986. [Google Scholar] [CrossRef]
- Shu, F.Y.; Yang, B.; Dong, S.Y.; Zhao, H.Y.; Xu, B.S.; Xu, F.J.; Liu, B.; He, P.; Feng, J.C. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings. Appl. Surf. Sci. 2018, 450, 538–544. [Google Scholar] [CrossRef]
- Liu, H.; Sun, S.F.; Zhang, T.; Zhang, G.Z.; Yang, H.F.; Hao, J.B. Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf. Coat. Technol. 2021, 405, 126522. [Google Scholar] [CrossRef]
- Cheng, J.B.; Sun, B.; Ge, Y.Y.; Hu, X.L.; Zhang, L.H.; Liang, X.B.; Zhang, X.C. Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(BxSi1−x)25 coating prepared by laser cladding. Surf. Coat. Technol. 2020, 402, 126320. [Google Scholar] [CrossRef]
- Zhou, Q.; Luo, D.W.; Hua, D.P.; Ye, W.T.; Li, S.; Zou, Q.G.; Chen, Z.Q.; Wang, H.F. Design and characterization of metallic glass/graphene multilayer with excellent nanowear properties. Friction 2022. [Google Scholar] [CrossRef]
- Liu, E.Y.; Wang, W.Z.; Gao, Y.M.; Jia, J.H. Tribological properties of adaptive Ni-based composites with addition of lubricious Ag2MoO4 at elevated temperatures. Tribol. Lett. 2012, 47, 21–30. [Google Scholar] [CrossRef]
- Jin, G.; Cai, Z.B.; Guan, Y.J.; Cui, X.F.; Liu, Z.; Li, Y.; Dong, M.L.; Zhang, D. High temperature wear performance of laser-cladded FeNiCoAlCu high entropy alloy coating. Appl. Surf. Sci. 2018, 445, 113–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.F.; Xiao, M.; Shen, Y.F. Tribological behavior of diamond reinforced FeNiCoCrTi0.5 carbonized high entropy alloy coating. Surf. Coat. Technol. 2020, 401, 126233. [Google Scholar] [CrossRef]
- Guo, Y.J.; Li, C.G.; Zeng, M.; Wang, J.Q.; Deng, P.R.; Wang, Y. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding. Mater. Chem. Phys. 2020, 242, 122522. [Google Scholar] [CrossRef]
- Jiang, P.F.; Zhang, C.H.; Zhang, S.; Zhang, J.B.; Chen, J.; Liu, Y. Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying. Mater. Chem. Phys. 2020, 255, 123571. [Google Scholar] [CrossRef]
- Shu, F.Y.; Zhang, B.L.; Liu, T.; Sui, S.H.; Liu, Y.X.; He, P.; Liu, B.; Xu, B.S. Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings. Surf. Coat. Technol. 2019, 358, 667–675. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Li, X.; Chen, P.J.; Yang, H.F.; Hao, J.B. Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFeNiTi0.8 high-entropy alloy coatings. Surf. Coat. Technol. 2020, 392, 125758. [Google Scholar] [CrossRef]
- Cui, G.; Han, B.; Yang, Y.; Li, M.Y.; Li, J.L. Sulfurizing of CoCrFeNiSi0.4 and CoCrFeMoNi high entropy alloys fabricated by laser cladding. Surf. Coat. Technol. 2020, 381, 125182. [Google Scholar] [CrossRef]
- Gu, Z.; Xi, S.Q.; Mao, P.; Wang, C. Microstructure and wear behavior of mechanically alloyed powder AlxMo0.5NbFeTiMn2 high entropy alloy coating formed by laser cladding. Surf. Coat. Technol. 2020, 401, 126244. [Google Scholar] [CrossRef]
- Li, Y.N.; Liang, H.; Nie, Q.X.; Qi, Z.X.; Deng, D.W.; Jiang, H.; Cao, Z.Q. Microstructures and Wear Resistance of CoCrFeNi2V0.5Tix High-Entropy Alloy Coatings Prepared by Laser Cladding. Crystals 2020, 10, 352. [Google Scholar] [CrossRef]
- Zhu, S.S.; Yu, Y.Q.; Zhang, B.S.; Zhang, Z.J.; Yan, X.; Wang, Z.Z. Microstructure and wear behaviour of in-situ TiN-Al2O3 reinforced CoCrFeNiMn high-entropy alloys composite coatings fabricated by plasma cladding. Mater. Lett. 2020, 272, 127870. [Google Scholar] [CrossRef]
- Cheng, J.B.; Sun, B.; Ge, Y.Y.; Hu, X.L.; Zhang, L.H.; Liang, X.B.; Zhang, X.C. Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior. Surf. Coat. Technol. 2020, 402, 126321. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhang, W.; Peng, Y.B.; Zhang, M.Y.; Liu, S.Y.; Liu, Y. Microstructures and Wear Resistance of FeCoCrNi-Mo High Entropy Alloy/Diamond Composite Coatings by High Speed Laser Cladding. Coatings 2020, 10, 300. [Google Scholar] [CrossRef]
- Wen, X.; Cui, X.F.; Jin, G.; Zhang, X.R.; Zhang, Y.; Zhang, D.; Fang, Y.C. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding. J. Alloys Compd. 2020, 835, 155449. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.F.; Xiao, M.; Shen, Y.F. Effect of Nb content on microstructure and properties of laser cladding FeNiCoCrTi0.5Nbx high-entropy alloy coating. Optik 2019, 198, 163316. [Google Scholar] [CrossRef]
- Gu, Z.; Mao, P.; Gou, Y.F.; Chao, Y.; Xi, S.Q. Microstructure and properties of MgMoNbFeTi2Yx high entropy alloy coatings by laser cladding. Surf. Coat. Technol. 2020, 402, 126303. [Google Scholar] [CrossRef]
- Wang, H.L.; Liu, Q.B.; Guo, Y.X.; Lan, H.W. MoFe1.5CrTiWAlNbx refractory high-entropy alloy coating fabricated by laser cladding. Intermetallics 2019, 115, 106613. [Google Scholar] [CrossRef]
- Yang, Y.C.; Ren, Y.J.; Tian, Y.W.; Li, K.Y.; Bai, L.C.; Huang, Q.L.; Shan, Q.; Tian, Y.T.; Wu, H. Microstructure and tribological behaviors of FeCoCrNiMoSix high-entropy alloy coatings prepared by laser cladding. Surf. Coat. Technol. 2022, 432, 128009. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhang, B.S.; Zhu, S.S.; Yu, Y.Q.; Wang, Z.Z.; Zhang, X.C.; Bin, L. Microstructural characteristics and enhanced wear resistance of nanoscale Al2O3/13 wt%TiO2-reinforced CoCrFeMnNi high entropy coatings. Surf. Coat. Technol. 2021, 412, 127019. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Kang, J.J.; Zhang, J.; Fu, Z.Q.; Zhu, L.N.; She, D.S.; Yue, W. Microstructure and sliding wear behavior of HVOF sprayed Al(1−x)CoCrFeNiTix high-entropy alloy coatings. Mater. Lett. 2022, 314, 131929. [Google Scholar] [CrossRef]
- Liu, X.; Lv, F.; Li, H.W.; Wang, Y.G.; Lu, X.L.; Zhao, D. Microstructure and High-Temperature Tribological Behavior of Plasma-Sprayed FeCoCrAlNi High Entropy Alloy Coatings Under Higher Load Condition. Therm. Spray Technol. 2022, 31, 1276–1284. [Google Scholar] [CrossRef]
- Shi, P.Y.; Yu, Y.; Xiong, N.N.; Liu, M.Z.; Qiao, Z.H.; Yi, G.W.; Yao, Q.Q.; Zhao, G.P.; Xie, E.Q.; Wang, Q.H. Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings. Tribol. Int. 2020, 151, 106470. [Google Scholar] [CrossRef]
- Zhang, S.T.; Li, W.G.; Hu, Y.H.; Jiang, T.; Guo, L.Y.; Zhang, Y.Y.; Zhao, Y.T. Effect of spraying power on the microstructure and wear behavior of the plasma-sprayed FeCoCrNiMo0.2 coating. AIP Adv. 2021, 11, 115110. [Google Scholar] [CrossRef]
- Liao, W.B.; Wu, Z.X.; Lu, W.J.; He, M.J.; Wang, T.; Guo, Z.X.; Huang, J.J. Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying. Intermetallics 2021, 132, 107138. [Google Scholar] [CrossRef]
- Jin, B.Q.; Zhang, N.N.; Yu, H.S.; Hao, D.X.; Ma, Y.L. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance. Surf. Coat. Technol. 2020, 402, 126328. [Google Scholar] [CrossRef]
- Wu, Z.X.; He, M.J.; Feng, C.S.; Wang, T.L.; Lin, M.Z.; Liao, W.B. Effects of Annealing on the Microstructures and Wear Resistance of CoCrFeNiMn High-Entropy Alloy Coatings. Therm. Spray Technol. 2022, 31, 1244–1251. [Google Scholar] [CrossRef]
- Erdogan, A.; Doleker, K.M. Comparative study on dry sliding wear and oxidation performance of HVOF and laser re-melted Al0.2CrFeNi(Co,Cu) alloys. Trans. Nonferrous Met. Soc. China 2021, 31, 2428–2441. [Google Scholar] [CrossRef]
- Nair, R.B.; Perumal, G.; McDonald, A. Effect of Microstructure on Wear and Corrosion Performance of Thermally Sprayed AlCoCrFeMo High-Entropy Alloy Coatings. Adv. Eng. Mater. 2022, 24, 2101713. [Google Scholar] [CrossRef]
- Lobel, M.; Lindner, T.; Lampke, T. High-temperature wear behaviour of AlCoCrFeNiTi0.5 coatings produced by HVOF. Surf. Coat. Technol. 2020, 403, 126379. [Google Scholar] [CrossRef]
- Xiao, J.K.; Li, T.T.; Wu, Y.Q.; Chen, J.; Zhang, C. Microstructure and Tribological Properties of Plasma-Sprayed CoCrFeNi-based High-Entropy Alloy Coatings Under Dry and Oil-Lubricated Sliding Conditions. Therm. Spray Technol. 2021, 30, 926–936. [Google Scholar] [CrossRef]
- Liu, S.Y.; Peng, Y.B.; Zhang, Y.; Wang, Y.M.; Fan, W.J.; Wang, A.D.; Zhang, W.; Tan, Y.N.; Ma, Q.Y. Effect of Nanostructure on Wear and Corrosion Behavior of HVAF-Sprayed Eutectic High-Entropy Alloy Coatings. Therm. Spray Technol. 2022, 31, 1252–1262. [Google Scholar] [CrossRef]
- Zou, Y.M.; Qiu, Z.G.; Yin, S. Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray. Surf. Coat. Technol. 2022, 434, 128205. [Google Scholar] [CrossRef]
- Dixit, S.; Rodriguez, S.; Jones, M.R.; Buzby, P.; Dixit, R.; Argibay, N.; DelRio, F.W.; Lim, H.H.; Fleming, D. Refractory High-Entropy Alloy Coatings for High-Temperature Aerospace and Energy Applications. Therm. Spray Technol. 2022, 31, 1021–1031. [Google Scholar] [CrossRef]
- Alvi, S.; Jarzabek, D.M.; Kohan, M.G.; Hedman, D.; Jenczyk, P.; Natile, M.M.; Vomiero, A.; Akhtar, F. Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering. ACS Appl. Mater. Interfaces 2020, 12, 21070–21079. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Zhang, X.M.; Quan, H.; Chen, Y.J.; Wang, S.; Zhang, S. Effect of Mo addition on structures and properties of FeCoNiCrMn high entropy alloy film by direct current magnetron sputtering. J. Alloys Compd. 2021, 895, 162709. [Google Scholar] [CrossRef]
- Fan, J.; Liu, X.; Pu, J.; Shi, Y. Anti-friction mechanism of VAlTiCrMo high-entropy alloy coatings through tribo-oxidation inducing layered oxidic surface. Tribol. Int. 2022, 171, 107523. [Google Scholar] [CrossRef]
- Wang, J.J.; Kuang, S.F.; Yu, X.; Wang, L.Q.; Huang, W.J. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surf. Coat. Technol. 2020, 403, 126374. [Google Scholar] [CrossRef]
- Yu, X.; Wang, J.J.; Wang, L.Q.; Huang, W.J. Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surf. Coat. Technol. 2021, 412, 127074. [Google Scholar] [CrossRef]
- Feng, X.G.; Zhang, K.F.; Zheng, Y.G.; Zhou, H.; Wan, Z.H. Chemical state, structure and mechanical properties of multi-element (CrTaNbMoV)Nx films by reactive magnetron sputtering. Mater. Chem. Phys. 2020, 239, 121991. [Google Scholar] [CrossRef]
- Bachani, S.K.; Wang, C.J.; Lou, B.S.; Chang, L.C.; Lee, J.W. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics. J. Alloys Compd. 2021, 873, 159605. [Google Scholar] [CrossRef]
- Wang, Y.X.; He, N.K.; Wang, C.T.; Li, J.L.; Guo, W.M.; Sui, Y.F.; Lan, J.B. Microstructure and tribological performance of (AlCrWTiMo)N film controlled by substrate temperature. Appl. Surf. Sci. 2022, 574, 151677. [Google Scholar] [CrossRef]
- Lin, Y.C.; Hsu, S.Y.; Song, R.W.; Lo, W.L.; Lai, Y.T.; Tsai, S.Y.; Duh, J.G. Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surf. Coat. Technol. 2020, 403, 126417. [Google Scholar] [CrossRef]
- Huang, T.C.; Hsu, S.Y.; Lai, Y.T.; Tsai, S.Y.; Duh, J.G. Effect of NiTi metallic layer thickness on scratch resistance and wear behavior of high entropy alloy (CrAlNbSiV) nitride coating. Surf. Coat. Technol. 2021, 425, 127713. [Google Scholar] [CrossRef]
- Kao, W.H.; Su, Y.L.; Horng, J.H.; Wu, W.C. Mechanical, tribological, anti-corrosion and anti-glass sticking properties of high-entropy TaNbSiZrCr carbide coatings prepared using radio-frequency magnetron sputtering. Mater. Chem. Phys. 2021, 268, 124741. [Google Scholar] [CrossRef]
- Lu, X.L.; Zhang, C.X.; Zhang, X.; Cao, X.J.; Kang, J.; Sui, X.D.; Hao, J.Y.; Liu, W.M. Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV)Nx high-entropy nitride coatings in aviation lubricant. Ceram. Int. 2021, 47, 27342–27350. [Google Scholar] [CrossRef]
- Zhang, C.X.; Lu, X.L.; Wang, C.; Sui, X.D.; Wang, Y.F.; Zhou, H.B.; Hao, J.Y. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow. J. Mater. Sci. Technol. 2022, 107, 172–182. [Google Scholar] [CrossRef]
- Zhang, C.X.; Lu, X.L.; Zhou, H.B.; Wang, Y.F.; Sui, X.D.; Shi, Z.Q.; Hao, J.Y. Construction of a compact nanocrystal structure for (CrNbTiAlV)Nx high-entropy nitride films to improve the tribo-corrosion performance. Surf. Coat. Technol. 2021, 429, 127921. [Google Scholar] [CrossRef]
- Kao, W.H.; Su, Y.L.; Horng, J.H.; Wu, H.M. Effects of carbon doping on mechanical, tribological, structural, anti-corrosion and anti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings. Thin Solid Film. 2021, 717, 138448. [Google Scholar] [CrossRef]
Methods | Advantages | Defects |
---|---|---|
Laser cladding |
|
|
Magnetron sputtering |
|
|
Thermal spraying |
|
|
Electrochemical deposition |
|
|
Coatings | Main Phases | Hardness | Wear Rate/(×10−5 mm3 N−1 m−1) | Friction Coefficients | Design Approach | Ref. |
---|---|---|---|---|---|---|
AlCoCrFeNiSix | BCC | 8.19 GPa | 14.5 | 0.275 | composition design | [82] |
AlCoCrFeNiTi0.8 | BCC | ~ | 0.164 | 0.52 | Heat treatment | [91] |
AlxCrFeCoNiCu | FCC + BCC | 625 HV | 0.0664 | 0.57 | composition design | [79] |
AlxMo0.5NbFeTiMn2 | BCC | 1098.5 HV | ~ | 0.40 | composition design | [93] |
CoCr2.5FeNi2Tix | BCC + FCC | 472 HV | ~ | ~ | composition design | [80] |
CoCrBFeNiSi | Amorphous | ~1000 HV | ~ | 0.14 | process improvement | [90] |
CoCrCuFeNiSi0.2(TiC)x | FCC + TiC | 498.5 HV | ~ | 0.60 | addition of a second phase | [88] |
CoCrFeNi2V0.5Tix | BCC | 960 HV | 4.43 | ~ | composition design | [94] |
CoCrFeNiMn | FCC + TiN | ~200 HV | ~ | 0.66 | addition of a second phase | [95] |
CoCrFeNiSi0.4 | FCC | ~640 HV | ~ | 0.60 | process improvement | [92] |
CoCrFeMoNi | FCC | ~640 HV | ~ | 0.47 | process improvement | [92] |
Fe25Co25Ni25(B0.7Si0.3)25 | FCC + BCC + Laves | 11.9 GPa | 0.142 | ~ | composition design | [96] |
Fe25Co25Ni25(BxSi1-x)25 | FCC + Amorphous | 8.39 GPa | ~ | ~ | composition design | [83] |
(FeCoCrNi-Mo)C | FCC | 600 HV | ~ | 0.19 | addition of a second phase | [97] |
FeCrCoAlMn0.5Mo0.1 | BCC + FCC | 624.1 HV | ~ | 0.36 | process improvement | [98] |
(FeNiCoCrTi0.5)Cx | BCC | ~800 HV | ~ | ~ | addition of a second phase | [87] |
FeNiCoCrTi0.5Nbx | BCC + FCC + Laves | 852.5 HV | ~ | ~ | composition design | [99] |
MgMoNbFeTi2Yx | FCC + BCC | 1046 HV | ~ | ~ | composition design | [100] |
MoFe1.5CrTiWAlNbx | BCC + Laves | 910 HV | ~ | 0.52 | composition design | [101] |
FeCoCrBNiSi | Amorphous | 850 HV | 60 | 0.17 | composition design | [81] |
FeCoCrAlCu(TiC) | BCC + TiC | 10.82 GPa | ~ | 0.48 | addition of a second phase | [89] |
FeCoCrNiMoSix | FCC | 826 HV | 1.37 | 0.375 | composition design | [102] |
Coatings | Main Phases | Hardness | Wear Rate/(×10−5 mm3 N−1 m−1) | Friction Coefficients | Design Approach | Ref. |
---|---|---|---|---|---|---|
Al0.75CoCrFeNiTi0.25 | BCC | 8.869 GPa | 7.5 | ~0.7 | composition design | [104] |
Al0.2CrFeNiCu | FCC | 591 HV | ~ | ~0.2 | process improvement | [111] |
Al0.2CrFeNiCo | FCC + BCC | 361 HV | ~ | ~0.13 | process improvement | [111] |
Al0.6TiCrFeCoNi | BCC | 789 HV | 10.44 | ~0.75 | ~ | [29] |
AlCoCrFeMo | BCC | 5.78 GPa | 54.9 | ~ | process improvement | [112] |
AlCoCrFeNi | BCC + Ag + BaF2 + CaF2 | ~500 HV | 2.5 | 0.54 | addition of a second phase | [106] |
AlCoCrFeNiTi0.5 | BCC | 610 HV | ~ | 1.3 | ~ | [113] |
AlxCoCrFeNiSi | BCC + FCC | 1255 HV | 0.032 | 0.24 | composition design | [109] |
CoCrFeMnNi | FCC + Al2O3/TiO2 | 7.5 GPa | 0.5 | ~0.4 | addition of a second phase | [103] |
CoCrFeNiAl | BCC + FCC | 383 HV | 26 | 0.76 | composition design | [114] |
CoCrFeNiMn | FCC + MnCr2O4 | 359 HV | 3.18 | 0.51 | composition design | [114] |
CoCrFeNiMo0.5 | FCC + Cr2FeO4 | 312 HV | 12.7 | 0.56 | composition design | [114] |
CoCrFeNiMn | FCC | 471 HV | ~ | ~ | process improvement | [108] |
CoCrFeNiMn | FCC | 551 HV | 10.2 | ~ | process improvement | [110] |
CoFeNiCrTaAl | FCC + Laves | 546.6 HV | 4.5 | 0.616 | ~ | [115] |
FeCoCrAlNi | BCC | 542 HV | 10.2 | 0.27 | ~ | [105] |
FeCoCrNiMo0.2 | FCC + Oxide | 558 HV | 11.8 | 0.78 | process improvement | [107] |
FeCoNiCrMn(Al2O3) | FCC + Al2O3 | 302 HV | 24 | 0.96 | addition of a second phase | [116] |
FeCoNiCrSiAlx | FCC + BCC | 439 HV | 0.67 | 0.6 | composition design | [56] |
HfNbTaZr | BCC | 9.51 GPa | 59 | 0.33 | process improvement | [117] |
MoNbTaVW | BCC | 7.69 GPa | 37 | 0.26 | process improvement | [117] |
Films | Main Phases | Hardness | Wear Rate/(×10−5 mm3 N−1 m−1) | Friction Coefficients | Design Approach | Ref. |
---|---|---|---|---|---|---|
CuMoTaWV | BCC | 19 GPa | 0.64 | 0.25 | process improvement | [118] |
NbMoWTa/Ag | BCC | ~9.4 GPa | 0.9 | 0.3 | addition of a second phase | [28] |
CrNbSiTiZr | Amorphous | 12.4 GPa | ~ | 0.53 | process improvement | [122] |
CrNbTiMoZr | Amorphous + BCC | 9.7 GPa | ~ | 0.5 | process improvement | [121] |
VAlTiCrMo0.6 | BCC | 10.35 GPa | 11.6 | 0.53 | composition design | [120] |
VAlTiCr | BCC | 7.3 GPa | 21.5 | 0.55 | composition design | [120] |
FeCoNiCrMnMo | FCC + BCC | 12 GPa | ~ | 0.3 | composition design | [119] |
(AlCrNbSiTiMo)N | FCC | 34.5 GPa | 0.12 | 0.68 | process improvement | [25] |
(Cr0.35Al0.25Nb0.12Si0.08V0.20)N | FCC | 35 GPa | 0.2 | 0.88 | process improvement | [126] |
(CrAlTiNbV)N | FCC | 35.5 GPa | ~ | ~ | process improvement | [129] |
(CrNbTiAlV)Nx | FCC | 49.95 GPa | ~ | ~ | composition design | [130] |
(CrNbTiAlV)N | FCC | 35.3 GPa | ~ | ~ | process improvement | [131] |
(CrTaNbMoV)Nx | FCC | 21.6 GPa | 0.84 | ~0.65 | composition design | [123] |
(AlCrTiZrHf)N | Amorphous + FCC | 33.1 GPa | ~ | 0.5 | composition design | [68] |
(AlCrWTiMo)N | FCC | 24.5 GPa | 1.1 | 0.67 | process improvement | [125] |
NiTi /(CrAlNbSiV)N | FCC | 31.1 GPa | ~ | ~0.8 | composition design | [127] |
(FeMnNiCoCr)Nx | FCC | 17 GPa | 0.018 | ~ | composition design | [71] |
(TiZrNbTaFe)Nx | Amorphous | 36.2 GPa | 0.075 | 0.69 | composition design | [124] |
(TaNbSiZrCr)Cx | Amorphous + FCC | 14.4 GPa | 0.033 | 0.09 | composition design | [128] |
(CrNbSiTaZr)Cx | Amorphous | 14 GPa | 0.016 | 0.05 | composition design | [132] |
(CrNbSiTiZr)Cx | Amorphous | 32 GPa | 0.02 | 0.07 | composition design | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, D.; Zhou, Q.; Huang, Z.; Li, Y.; Liu, Y.; Li, Q.; He, Y.; Wang, H. Tribological Behavior of High Entropy Alloy Coatings: A Review. Coatings 2022, 12, 1428. https://doi.org/10.3390/coatings12101428
Luo D, Zhou Q, Huang Z, Li Y, Liu Y, Li Q, He Y, Wang H. Tribological Behavior of High Entropy Alloy Coatings: A Review. Coatings. 2022; 12(10):1428. https://doi.org/10.3390/coatings12101428
Chicago/Turabian StyleLuo, Dawei, Qing Zhou, Zhuobin Huang, Yulong Li, Yulin Liu, Qikang Li, Yixuan He, and Haifeng Wang. 2022. "Tribological Behavior of High Entropy Alloy Coatings: A Review" Coatings 12, no. 10: 1428. https://doi.org/10.3390/coatings12101428
APA StyleLuo, D., Zhou, Q., Huang, Z., Li, Y., Liu, Y., Li, Q., He, Y., & Wang, H. (2022). Tribological Behavior of High Entropy Alloy Coatings: A Review. Coatings, 12(10), 1428. https://doi.org/10.3390/coatings12101428