Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied at ESRI Nano-Fabrication Laboratories, ECU, Australia
Abstract
:1. Introduction
2. Materials Composition Studied, Garnet Development Approaches, Technological Processes, and Characterization Techniques
2.1. Materials Composition Studied and Multilayer Structures
2.2. RF Magnetron Sputtering and Co-Sputtering Processes
2.3. Sequential Sputtering of Multilayer Garnet Structures
2.4. Garnet Layer Formed under a Protective Oxide Layer
2.5. Post-Deposition Oxygen Plasma Treatment Applied to As-Deposited Garnet Layer
2.6. Investigation of Deposition Process Parameter Effects on Garnet Layers
2.7. Preparation of Garnet-Coated Magnetic Fluorescent Micro/Nanoparticles
2.8. Annealing Crystallization Processes and Material Characterization Techniques
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- YIG: Bi2O3 nanocomposite thin films for magneto-optic and microwave applications. Journal of nanomaterials, 2015, Article ID 182691, https://doi.org/10.1155/2015/182691.
- Synthesis, characteristics and material properties dataset of Bi:DyIG-oxide garnet type nanocomposites. Journal of nanomaterials, 2015, Article ID 127498, https://doi.org/10.1155/2015/127498.
- Growth, characterization, and properties of Bi1.8Lu1.2Fe3.6Al1.4O12 garnet films prepared using two different substrate temperatures. Int. J. Materials Engineering Innovation, Vol. 5, No. 3, 2014, https://doi.org/10.1504/IJMATEI.2014.064275.
- Physical properties and behaviour of highly Bi-substituted magneto-optic garnets for applications in integrated optics and photonics. Advances in Optical Technologies, volume 2011, Article ID 971267, 7 pages, https://doi:10.1155/2011/971267.
- Nano-structured magnetic photonic crystals for magneto-optic polarization controllers at the communication-band wavelengths. Opt. Quant. Electron. 41, 661-669, 2009.
- Analysis, optimization, and characterization of magnetic photonic crystal structures and thin-film material layers. Technologies, 2019, 7 (3), 49, https://doi.org/10.3390/technologies7030049.
- Sensing of surface and bulk refractive index using magnetophotonic crystal with hybrid magneto-optical response. Sensors, 2021, 21, 1984.
- Magneto-optic properties of ultrathin nanocrystalline ferrite garnet films in the 8K to 300K temperature interval. Journal of nanomaterials, 2018, Article ID 7605620, https://doi.org/10.1155/2018/7605620.
- Properties of magnetic photonic crystals in the visible spectral region and their performance limitations. Photonics and Nanostructures - Fundamentals and Applications, 2018, Vol. 28, pp 12-19, https://doi.org/10.1016/j.photonics.2017.11.003.
- High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications. JETP Letters, 2016, Vol. 104, No. 10, pp. 679–684, https://doi.org/10.1134/S0021364016220094.
- Transverse magnetic field impact on waveguide modes of photonic crystals. Optics Latter, 2016, Vol. 41 (16), pp 3813-3816, https://doi.org/10.1364/OL.41.003813.
- Tunable optical nanocavity of iron-garnet with a buried metal layer. Materials, 2015, 8(6), 3012-3023; https://doi.org/10.3390/ma8063012.
- Magneto-optic properties of ultrathin bismuth-substituted ferrite garnet films obtained by RF magnetron sputtering method. J. Comm. Tech. Electron., 2014, https://doi.org/10.1134/S1064226914110096.
- Magneto-Photonic intensity effects in hybrid metal-dielectric structures. Physical Review B, 89, 045118 (2014), https://doi.org/10.1103/PhysRevB.89.045118.
- Plasmon mediated magneto-optical transparency. Nature Communications, 4:2128, https://doi.org/10.1038/ncomms3128 (2013).
- Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals. New J. Phys., 15, 075024, (2013), https://doi.org/10.1088/1367-2630/15/7/075024.
- Magnetic heterostructures with low coercivity for high-performance magneto-optic devices. J. Phys. D: Appl. Phys., 46 035001, (2013), https://doi.org/10.1088/0022-3727/46/3/035001. Impact Factor-2.829, Cite Score-2.75.
References
- Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials; Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 1997; ISBN 075030362X. [Google Scholar]
- Hansteen, F. Ultrafast Optical Control of Magnetization in Ferrimagnetic Garnets. Ph.D. Thesis, Radboud University Nijmegen, Nijmegen, The Netherlands, 2006. Available online: http://www.hansteen.net/thesis.pdf (accessed on 22 June 2022).
- Bi, L.; Hu, J.; Jiang, P.; Kim, H.S.; Kim, D.H.; Onbasli, M.C.; Dionne, G.F.; Ross, C.A. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices. Materials 2013, 6, 5094–5117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, G.; Lacklison, D. Magnetooptic properties and applications of bismuth substituted iron garnets. IEEE Trans. Magn. 1976, 12, 292–311. [Google Scholar] [CrossRef]
- Nistor, I. Development of Magnetic Field Sensors Using Bisbuth-Substituted Garnets Thin Films with In-Plane Magnetization. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2006. [Google Scholar]
- Kang, S. Advanced Magneto-Optical Materials and Devices. Ph.D. Thesis, The Pennsylvania University, Philadelphia, PA, USA, 2007. [Google Scholar]
- Gomi, M.; Tanida, T.; Abe, M. RF sputtering of highly Bi-susbtituted garnet films on glass substrates for magneto-optic memory. J. Appl. Phys. 1997, 81, 5653–5655. [Google Scholar]
- Buhrer, C.F. Faraday rotation and dichroism of bismuth calcium vanadium iron garnet. J. Appl. Phys. 1969, 40, 4500–4502. [Google Scholar] [CrossRef]
- Danish, A.W. Study on Preparation and Characterization of Bismuth Substituted Gadolinium Iron Garnet Thin Films by Metal orgaini Decomposition Method. Ph.D. Thesis, Tokyo University of Agriculture and Technology, Tokyo, Japan, 2017. [Google Scholar]
- Deb, M.; Popova, E.; Keller, N. Different magneto-optical response of magnetic sublattices as a function of temperature in ferrimagnetic bismuth iron garnet films. Phys. Rev. B 2019, 100, 224410. [Google Scholar] [CrossRef]
- Kahl, S. Bismuth Iron Garnet Films for Magneto-Optical Photonic Crystals. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2004. Available online: https://www.diva-portal.org/smash/get/diva2:9551/FULLTEXT01.pdf (accessed on 11 November 2008).
- Vasiliev, M.; Alam, M.N.-E.; Kotov, V.A.; Alameh, K.; Belotelov, V.I.; Burkov, V.I.; Zvezdin, K.A. RF magnetron sputtered (BiDy)3(FeGa)5O12:Bi2O3 composite garnet-oxide materials possessing record magneto-optic quality in the visible spectral region. Opt. Express 2009, 17, 19519–19535. [Google Scholar] [CrossRef] [Green Version]
- Alam, M. High Performance Magneto-Optic Garnet Materials for Integrated Optics and Photonics. PhD Thesis, Edith Cowan University, Joondalup, WA, Australia, 2012. Available online: https://ro.ecu.edu.au/theses/528 (accessed on 30 September 2022).
- Yao, S.; Sato, T.; Kaneko, K.; Murai, S.; Fujita, K.; Tanaka, K. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method. Jpn. J. Appl. Phys. 2015, 54, 063001. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Zhang, D.; Wu, Y.; Zhang, H. Magnetic properties of bismuth substituted yttrium iron garnet film with perpendicular magnetic anisotropy. AIP Adv. 2019, 9, 115001. [Google Scholar] [CrossRef] [Green Version]
- Zanjani, S.M.; Onbasli, M.C. Thin film rare earth iron garnets with perpendicular magnetic anisotropy for spintronic applications. AIP Adv. 2019, 9, 035024. [Google Scholar] [CrossRef]
- Eschenfelder, A. Magnetic Bubble Technology; Springer: New York, NY, USA, 1980. [Google Scholar]
- Aichele, T.; Lorenz, A.; Hergt, R.; Görnert, P. Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications—A review. Cryst. Res. Technol. 2003, 38, 575–587. [Google Scholar] [CrossRef]
- Abe, M.; Gomi, M. Magneto-optical recording on garnet films. J. Mag. Mag. Mate. 1990, 84, 222–228. [Google Scholar] [CrossRef]
- Inoue, M. Magnetophotonic crystals. Mater. Res. Soc. Symp. Proc. 2005, 834, J1.1. [Google Scholar]
- Hu, S.; Guo, Z.; Dong, L.; Deng, F.; Jiang, H.; Chen, H. Enhanced Magneto-Optical Effect in Heterostructures Composed of Epsilon-Near-Zero Materials and Truncated Photonic Crystals. Front. Mater. 2022, 9, 1–10. [Google Scholar] [CrossRef]
- Wu, Z. Planar Magneto-Photonic and Gradient-Photonic Structures: Crystals and Metamaterials. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2010. Available online: https://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1120&context=etds (accessed on 17 August 2022).
- Da, H.; Li, Z. Manipulating nematic liquid crystals-based magnetophotonic crystals. In New Developments in Liquid Crystals; Tkachenko, G., Ed.; IntechOpen: London, UK, 2009. [Google Scholar]
- Fathi, F.; Rashidi, M.-R.; Pakchin, P.S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2020, 221, 121615. [Google Scholar] [CrossRef] [PubMed]
- Sohlstrom, H. Fibre Optic Magnetic Field Sensors Utilizing Iron Garnet Materials. Ph.D. Thesis, School of Electrical Engineering, Royal Institute of Technology, Stockholm, Sweden, 1993. [Google Scholar]
- Jha, A.R. Rare Earth Materials: Properties and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis group: London, Uk, 2014; Available online: https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/BUKU%20REE/Rare%20Earth%20Materials%20Properties%20and%20Applications%20by%20Jha,%20A.R.%20(z-lib.org).pdf (accessed on 19 August 2022).
- Mitra, A. Structural and Magnetic Properties of YIG Thin Films and Interfacial Origin of Magnetisation Suppression. Ph.D. Thesis, University of Leeds, Leeds, UK, 2017. Available online: https://etheses.whiterose.ac.uk/18696/1/Arpita%20Mitra_FinalThesis.pdf (accessed on 19 August 2022).
- Zhukov, A.; Inoue, M.; Phan, M.-H.; Shavrov, V. Advanced Magnetic Materials. Phys. Res. Int. 2012, 2012, 385396. [Google Scholar] [CrossRef] [Green Version]
- Urakawa, R.; Asano, W.; Nishikawa, M.; Kawahara, M.; Nishi, T.; Oshima, D.; Kato, T.; Ishibashi, T. Magneto-optical property and magnetic anisotropy of (100) oriented R0.5Bi2.5Fe5O12 (R = Eu, Sm, and Pr) thin films prepared by metal–organic decomposition. AIP Advances 2022, 12, 095322. [Google Scholar] [CrossRef]
- Jesenska, E.; Yoshida, T.; Shinozaki, K.; Ishibashi, T.; Beran, L.; Zahradnik, M.; Antos, R.; Kučera, M.; Veis, M. Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition. Opt. Mater. Express 2016, 6, 1986–1997. [Google Scholar] [CrossRef]
- Alam, M.N.-E.; Vasiliev, M.; Alameh, K. Bi3Fe5O12: Dy2O3 composite thin film materials for magneto-photonics and magneto-plasmonics. Opt. Mater. Express 2014, 4, 1866–1875. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Kotov, V.A.; Balabanov, D.; Akimov, I.; Alameh, K. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures. Materials 2015, 8, 1976–1992. [Google Scholar] [CrossRef] [Green Version]
- Kotov, V.; Nur-E-Alam, M.; Vasiliev, M.; Alameh, K.; Balabanov, D.; Burkov, V. Enhanced Magneto-Optic Properties in Sputtered Bi- Containing Ferrite Garnet Thin Films Fabricated Using Oxygen Plasma Treatment and Metal Oxide Protective Layers. Materials 2020, 13, 5113. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Kotov, V.; Alameh, K. Recent Developments in Magneto-optic Garnet-type Thin-film Materials Synthesis. Procedia Eng. 2014, 76, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Nur-E-Alam, M.; Vasiliev, M.; Kotov, V.A.; Alameh, K. Highly bismuth-substituted, record-performance magneto-optic garnet materials with low coercivity for applications in integrated optics, photonic crystals, imaging and sensing. Opt. Mater. Express 2011, 1, 413–427. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Belotelov, V.; Alameh, K. Properties of Ferrite Garnet (Bi, Lu, Y)3(Fe, Ga)5O12 Thin Film Materials Prepared by RF Magnetron Sputtering. Nanomaterials 2018, 8, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. High-performance RF-sputtered Bi-substituted iron garnet thin films with almost in-plane magnetization. Opt. Mater. Express 2017, 7, 676. [Google Scholar] [CrossRef] [Green Version]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Influence of Substrate Stage Temperature and Rotation Rate on the Magneto-Optical Quality of RF-Sputtered Bi2.1Dy0.9Fe3.9Ga1.1O12 Garnet Thin Films. Appl. Sci. 2018, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, M.; Nur-E.-Alam, M.; Alameh, K.; Premchander, P.; Lee, Y.T.; Kotov, V.A.; Lee, Y.P. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content. J. Phys. D Appl. Phys. 2011, 44, 075002. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K.; Kotov, V. Synthesis of high-performance magnetic garnet materials and garnet-bismuth oxide nanocomposites using physical vapor deposition followed by high-temperature crystallization. Pure Appl. Chem. 2011, 83, 1971–1980. [Google Scholar] [CrossRef] [Green Version]
- Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Optical constants of rare-earth substituted amorphous oxide-mix-based layers deposited to enable synthesis of magneto-optic garnets. Opt. Mater. 2019, 98, 109309. [Google Scholar] [CrossRef]
- Fakhrul, T.; Tazlaru, S.; Khurana, B.; Beran, L.; Bauer, J.; Vančík, M.; Marchese, A.; Tsotsos, E.; Kučera, M.; Zhang, Y.; et al. High Figure of Merit Magneto-Optical Ce- and Bi-Substituted Terbium Iron Garnet Films Integrated on Si. Adv. Opt. Mater. 2021, 9, 2100512. [Google Scholar] [CrossRef]
- Voronov, A.A.; Mikhailova, T.; Borovkova, O.V.; Shaposhnikov, A.N.; Berzhansky, V.N.; Belotelov, V.I. Bismuth-Substituted Iron Garnet Films for Magnetophotonics: Part A—Fabrication Methods and Microstructure Property Study. Inorg. Org. Thin Film. 2021, 1, 125–159. [Google Scholar] [CrossRef]
- Denysenkov, V.; Jalali-Roudsar, A.; Adachi, A.; Khartsev, S.; Grishin, A.; Okuda, T. Ferromagnetic resonancein single crystal bismuth iron garnet film. MRS Online Proc. Libr. 1999, 603, 107–112. [Google Scholar] [CrossRef]
- Berzhansky, V.N.; Shaposhnikove, A.N.; Karavanikov, A.V.; Propkopov, A.R.; Mikhailova, T.V.; Kharchenkov, N.F.; Lukienko, I.N.; Karchenko, Y.N.; Miloslavskaya, O.V.; Kotov, V.A.; et al. The effect of Faraday rotation enhancement in nanolayered structures of Bi-substituted iron garnets. Solid State Phenom. 2013, 200, 233–238. [Google Scholar] [CrossRef]
- Vertruyen, B.; Cloots, R.; Abell, J.S.; Jackson, T.J.; da Silva, R.; Popova, E.; Keller, N. Curie temperature, exchange integrals, and magneto-optical properties in off-stoichiometric bismuth iron garnet epitaxial films. Phys. Rev. B 2008, 78, 094429. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Yin, S.; Adyam, V.; Li, Q.; Zhu, Y. Bi3Fe4Ga1O12 Garnet Properties and Its Application to Ultrafast Switching in the Visible Spectrum. IEEE Trans. Magn. 2007, 43, 3656–3660. [Google Scholar] [CrossRef]
- Nachimutu, R.K. Synthesis and Characterization of Cerium Substituted Iron Garnets on Amorphous Substrates. Ph.D. Thesis, The University of Western Australia, Crawley, WA, Australia, 2016. [Google Scholar]
- Lou, G.; Kato, T.; Iwata, S.; Ishibashi, T. Magneto-optical properties and magnetic anisotropy of Nd0.5Bi2.5Fe5-yGayO12 thin films on glass substrates. Opt. Mater. Express 2017, 7, 2248. [Google Scholar] [CrossRef]
- Siao, Y.-J.; Qi, X.; Lin, C.-R.; Huang, J.-C. Dielectric relaxation and magnetic behavior of bismuth-substituted yttrium iron garnet. J. Appl. Phys. 2011, 109, 07A508. [Google Scholar] [CrossRef]
- Sahoo, M.R.; Barik, A.; Kuila, S.; Tiwary, S.; Ghosh, R.; Babu, P.D.; Kaushik, S.D.; Vishwakarma, P.N. Magnetic and electrical transportstudies of polycrystallineSr1−xBixFe12O19 (x = 0, 0.01, and 0.02). J. Phys. D Appl. Phys. 2022, 55, 265001. [Google Scholar] [CrossRef]
- Manda, C.S.; Singh, M.R. Fabrication and characterization of Bismuth-Cerium composite iron garnet epitaxial films for magneto optical applications. J. Appl. Phys. 2012, 112, 083525. [Google Scholar]
- Botas, A.M.P. New Frontiers in Novel Optical Materials and Devices. Coatings 2022, 12, 856. [Google Scholar] [CrossRef]
- Kimel, A.; Zvezdin, A.; Sangeeta, S.; Shallcross, S.; de Sousa, N.; García-Martín, A.; Salvan, G.; Hamrle, J.; Stejskal, O.; McCord, J.; et al. The 2022 Magneto-Optics Roadmap. J. Phys. D Appl. Phys. 2022, 55, 463003. [Google Scholar] [CrossRef]
Material Composition Type and Multilayer Structures | Focus of Studies | Methodology | Specific Faraday Rotation (°/µm) in the Visible Wavelength Range | Major Publication | |
---|---|---|---|---|---|
532 nm | 635 nm | ||||
(Bi,Dy)3(Fe,Ga)5O12: Bi2O3 | The focus was to investigate the effects of additional extra bismuth oxide content that can lead to significant improvements in the optical transparency and specific Faraday rotation of sputtered garnet materials in the visible range. | Co-sputtering | 9.8 | 2.6 | Optics Express, DOI:10.1364/OE.17.019519 [12] |
Bi2.1Dy0.9Fe4.3Ga0.7O12 | The motivation was to explore a new garnet-film stoichiometry type, which was expected to possess somewhat “intermediate” magnetic anisotropy properties, i.e., having neither the in plane nor perpendicular magnetization direction. | Sputtering | 10.12 | 1.66 | Optical Materials Express, DOI:10.1364/OME.7.000676 [37] |
Bi3Fe5O12:Dy2O3 | Bi3Fe5O12: Dy2O3 (between 2.7 and 20 vol. % of added dysprosium oxide content) garnet-type nanocomposite thin-films have been prepared to synthesize a garnet material with the highest possible bismuth substitution level approaching 3 formula units and to obtain the best possible MO properties, even though the thin garnet layers sputtered from a ceramic stoichiometrically mixed oxide-based Bi3Fe5O12 target unexpectedly showed negligible Faraday rotation. | Co-sputtering | 13.30 | 3.23 | Optical Materials Express, DOI:10.1364/OME.4.001866 [31] |
Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 | This study focused on the fabrication of RF sputtered Bi1.8Lu1.2Fe3.6Al1.4O12 and the results of adjusting the optical and magnetic properties of these films utilizing co-sputtering deposition using an additional bismuth oxide target. | Co-sputtering | 6.25 | 1.99 | Optical Materials Express, DOI:10.1364/OME.1.000413 [35] |
Bi2Dy1Fe4Ga1O12: Bi3Fe5O12 | The co-deposited all-garnet garnet-mix-type films were synthesized to obtain the ultimate (highest possible) bismuth substitution level without using a single-target Bi3Fe5O12 sputtering process (which was found to result in films not crystallizing into garnet phase unless composition-diluted through co-sputtering). | Co-sputtering | 8.25 | 1.52 | Procedia Engineering, 76 (2014), 61-73. DOI: 10.1016/j.proeng.2013.09.248 [34] |
Bi0.9Lu1.85Y0.25 Fe4.0Ga1O12 | The motivation was to explore a new type of garnet material stoichiometry, (Bi0.9Lu1.85Y0.25Fe4.0Ga1O12), with a combined substitution of Bi and Lu ions at yttrium (Y) lattice sites, which has so far not been explored extensively using physical vapor deposition techniques. Special attention was devoted to the synthesis of a garnet layer with its lattice parameter as close as possible to that of Y3Fe5O12 (YIG), and to obtaining low coercivity for applications requiring magnetization-state switching such as MO imaging. | Sputtering | 1.25 | 0.89 | Nanomaterials, DOI: 10.3390/nano8050355 [36] |
All-garnet multilayer structures | The goal was to explore the engineering of magnetic properties in garnet multilayers, and especially to identify the ways of adjusting the coercive force and magnetic switching and magnetic anisotropy properties by varying the component layer stoichiometries. The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures have been studied in detail. | Sequential sputtering | NA | Materials 2015, 8, 1976-1992; DOI:10.3390/ma8041976 [32] | |
Garnet layer/oxide layer structures | A new technological approach has been applied for the RF-magnetron sputter deposition and annealing crystallization of Bi-substituted iron garnet films. | Sequential sputtering | ̴2.7 times increment of MO quality factor obtained in crystallized films. | Materials 2020, 13, 5113; DOI:10.3390/ma13225113 [33] |
Materials Short Name | Materials Nominal Stoichiometry | Obtained Figure of Merit at 532 nm (°) | Fabrication Process |
---|---|---|---|
BIG | Bi3Fe5O12 | 9.0 ± 0.5 | PLD [48] |
BIGG | Bi3Fe4Ga1O12 | 16.5 ± 1.0 | PLD [48] |
BiDyIG | NA | 6.8 | Biased target ion beam deposition (BTIBD) [49] |
BiCeDyIG | NA | 13.1 | BTIBD [49] |
Bi2.5Ga:NIG | Nd0.5Bi2.5Fe5-yGayO12 (Y= 0-1) | < 6 | Metal organic decomposition (MOD) [50] |
(Bi,Dy)3(Fe,Ga)5O12: Bi2O3 composites | NA | 29.5 | RF magnetron co-sputtering [12] |
Bi1.8Lu1.2Fe3.6Al1.4O12: Bi2O3 composites | NA | 22.1 | RF magnetron co-sputtering [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur-E-Alam, M.; Vasiliev, M.; Alameh, K. Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied at ESRI Nano-Fabrication Laboratories, ECU, Australia. Coatings 2022, 12, 1471. https://doi.org/10.3390/coatings12101471
Nur-E-Alam M, Vasiliev M, Alameh K. Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied at ESRI Nano-Fabrication Laboratories, ECU, Australia. Coatings. 2022; 12(10):1471. https://doi.org/10.3390/coatings12101471
Chicago/Turabian StyleNur-E-Alam, Mohammad, Mikhail Vasiliev, and Kamal Alameh. 2022. "Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied at ESRI Nano-Fabrication Laboratories, ECU, Australia" Coatings 12, no. 10: 1471. https://doi.org/10.3390/coatings12101471
APA StyleNur-E-Alam, M., Vasiliev, M., & Alameh, K. (2022). Bi-Substituted Ferrite Garnet Type Magneto-Optic Materials Studied at ESRI Nano-Fabrication Laboratories, ECU, Australia. Coatings, 12(10), 1471. https://doi.org/10.3390/coatings12101471