New Frontiers in Novel Optical Materials and Devices
Funding
Conflicts of Interest
References
- Sudarsan, V. Optical Materials: Fundamentals and Applications. In Functional Materials Preparation, Processing and Applications; Banerjee, S., Tyagi, A.K., Eds.; Elsevier: London, UK, 2012. [Google Scholar]
- Darrigol, O. A History of Optics from Greek Antiquity to the Nineteenth Century; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Conroy, G. These Five Scientific Fields Win the most Nobel Prizes. Nature Index, 4 August 2020. [Google Scholar]
- Thomas, K. Particle Physics Theory Inspire Optics. Physics 2013, 6, s82. [Google Scholar]
- Gleeson, M.R.; Tomita, Y.; Gallego, S.; McLeod, R. Advances in Novel Optical Materials and Devices. Phys. Res. Int. 2013, 2013, 430947. [Google Scholar] [CrossRef]
- Glass, A.M. Optical Materials. Science 1987, 235, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Basu, S. A Review of Nonlinear Optical Organic Materials. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 183–186. [Google Scholar] [CrossRef]
- Eaton, D.F. Nonlinear Optical Materials. Science 1991, 253, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Dini, D.; Calvete, M.J.F.; Hanack, M. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation. Chem. Rev. 2016, 116, 13043–13233. [Google Scholar] [CrossRef] [PubMed]
- Abudurusuli, A.; Li, J.; Pan, S. A Review on the Recently Developed Promising Infrared Nonlinear Optical Materials. Dalton Trans. 2021, 50, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Bano, R.; Asghar, M.; Ayub, K.; Mahmood, T.; Iqbal, J.; Tabassum, S.; Zakaria, R.; Gilani, M.A. A Theoretical Perspective on Strategies for Modeling High Performance Nonlinear Optical Materials. Front. Mater. 2021, 8, 783239. [Google Scholar] [CrossRef]
- Gao, M.; Yang, Q.-F.; Ji, Q.-X.; Wang, H.; Wu, L.; Shen, B.; Liu, J.; Haung, G.; Chang, L.; Xie, W.; et al. Probing Material Absorption and Optical Nonlinearity of Integrated Photonic Materials. Nat. Commun. 2022, 13, 3323. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Imaoka, S.; Shimizu, M.; Hosono, R.; Yan, D.; Tya, H.; Katakura, M.; Nakamura, H.; Kubo, S.; Shishido, A.; et al. Liquid Crystalline 2D Borophene Oxide for Inorganic Optical Devices. Nat. Commun. 2022, 13, 1037. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; Riley, C.; Carey, E.M.; Nguyen, J.; Esener, S.; Nimmerjahn, A.; Sirbuly, D.J. Electro-optical Mechanically Flexible Coaxial Microprobes for Minimally Invasive Interfacing with Intrinsic Neural Circuits. Nat. Commun. 2022, 13, 3286. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botas, A.M.P. New Frontiers in Novel Optical Materials and Devices. Coatings 2022, 12, 856. https://doi.org/10.3390/coatings12060856
Botas AMP. New Frontiers in Novel Optical Materials and Devices. Coatings. 2022; 12(6):856. https://doi.org/10.3390/coatings12060856
Chicago/Turabian StyleBotas, Alexandre M. P. 2022. "New Frontiers in Novel Optical Materials and Devices" Coatings 12, no. 6: 856. https://doi.org/10.3390/coatings12060856
APA StyleBotas, A. M. P. (2022). New Frontiers in Novel Optical Materials and Devices. Coatings, 12(6), 856. https://doi.org/10.3390/coatings12060856