Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Characterization
2.2. Validation Materials
2.3. Constitutive Models for Nonlinear Finite Element Analysis
2.4. Rigid Hybrid Fiber Concrete RHFC Finite Element Model
3. Results Characterization and Discussion
3.1. Verification Results of Materials with the Finite Element Models
3.2. FE Modeling Results
3.3. Parametric Study on the RHFC Pavement
4. Conclusions
- Experiments have demonstrated that hybrid fiber reinforcement greatly enhances the strength and flexibility of pavements by minimizing cracking phenomena caused by loads or shrinkage effects.
- A relatively low amount of hybrid steel fibers efficiently improves the load-carrying capacity of pavements on the ground and makes the structural behavior more ductile; volume ratios of hybrid fibers greater than (0.68 + 0.2) percent hardly improve the ultimate load but significantly improve the pavement ductility.
- The finite element method applied in this study perfectly describes the behavior of RHFC pavement with soil under static loading.
- The load-deflection curves of RHFC pavements containing (0.8 + 0.2)% and (0.96 + 0.2)% hybrid (steel + macro-synthetic) fiber demonstrates a slight difference in behavior. This might be retained to increase the air voids and air content of the trapped air, resulting in a loss in compressive strength.
- The load-deflection curves of hybrid fiber-reinforced concrete pavements, which contained (0.68 and 0.2)% of hybrid (steel + macro-synthetic) fibers demonstrate a high difference in behavior, which has a significant impact on improving the characteristics of concrete.
- The most important outcome of this study is to find the ideal volumetric percentage of hybrid steel fibers with effective compressive strength and thickness values, which give a significant performance of rigid pavement, as well as the critical information that can use in the design of rigid pavement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Specimens Name | Load-Deflection Curves |
---|---|---|
1 | R1-P150-0-25 R4-H150-0.68-25 R7-H150-0.8-25 R10-H150-0.96-25 fc: 25 MPa t: 150 mm | |
2 | R2-P200-0-25 R5-H200-0.68-25 R8-H200-0.8-25 R11-H200-0.96-25 fc: 25 MPa t: 200 mm | |
3 | R3-P250-0-25 R6-H250-0.68-25 R9-H250-0.8-25 R12-H250-0.96-25 fc: 25 MPa t: 250 mm | |
4 | R13-P150-0-35 R16-H150-0.68-35 R19-H150-0.8-35 R22-H150-0.96-35 fc: 35 MPa t: 150 mm | |
5 | R14-P200-0-35 R17-H200-0.68-35 R20-H200-0.8-35 R23-H200-0.96-35 fc: 35 MPa t: 200 mm | |
6 | R15-P250-0-35 R18-H250-0.68-35 R21-H250-0.8-35 R24-H250-0.96-35 fc: 35 MPa t: 250 mm | |
7 | R25-P150-0-45 R28-H150-0.68-45 R31-H150-0.8-45 R34-H150-0.96-45 fc: 45 MPa t: 150 mm | |
8 | R26-P200-0-45 R29-H200-0.68-45 R32-H200-0.8-45 R35-H200-0.96-45 fc: 45 MPa t: 200 mm | |
9 | R27-P250-0-45 R30-H250-0.68-45 R33-H250-0.8-45 R36-H250-0.96-45 fc: 45 MPa t: 250 mm |
No. | Specimens Name | Finite Element Cracks Pattern | |
---|---|---|---|
1 | R1-P150-0-25 | ||
fc: 25 MPa | |||
t: 150 mm | |||
Vf: 0% | |||
2 | R2-P200-0-25 | ||
fc: 25 MPa | |||
t: 200 mm | |||
Vf: 0% | |||
3 | R3-P250-0-25 | ||
fc: 25 MPa | |||
t: 250 mm | |||
: 0% | |||
4 | R4-H150-0.68-25 | ||
fc: 25 MPa | |||
t: 150 mm | |||
: 0.68 + 0.2% | |||
5 | R5-H200-0.68-25 | ||
fc: 25 MPa | |||
t: 200 mm | |||
: 0.68 + 0.2% | |||
6 | R6-H250-0.68-25 | ||
fc: 25 MPa | |||
t: 250 mm | |||
: 0.68 + 0.2% | |||
7 | R7-H150-0.8-25 | ||
fc: 25 MPa | |||
t: 150 mm | |||
: 0.8 + 0.2% | |||
8 | R8-H200-0.8-25 | ||
fc: 25 MPa | |||
t: 200 mm | |||
: 0.8 + 0.2% | |||
9 | R9-H250-0.8-25 | ||
fc: 25 MPa | |||
t: 250 mm | |||
: 0.8 + 0.2% | |||
10 | R10-H150-0.96-25 | ||
fc: 25 MPa | |||
t: 150 mm | |||
: 0.96 + 0.2% | |||
11 | R11-H200-0.96-25 | ||
fc: 25 MPa | |||
t: 200 mm | |||
: 0. 96 + 0.2% | |||
12 | R12-H250-0.96-25 | ||
fc: 25 MPa | |||
t: 250 mm | |||
: 0.96 + 0.2% | |||
13 | R13-P150-0-35 | ||
fc: 35 MPa | |||
t: 150 mm | |||
: 0% | |||
14 | R14-P200-0-35 | ||
fc: 35 MPa | |||
t: 200 mm | |||
: 0% | |||
15 | R15-P250-0-35 | ||
35 MPa | |||
t: 250 mm | |||
: 0% | |||
16 | R16-H150-0.68-35 | ||
35 MPa | |||
t: 150 mm | |||
: 0.68 + 0.2% | |||
17 | R17-H200-0.68-35 | ||
35 MPa | |||
t: 200 mm | |||
: 0.68 + 0.2% | |||
18 | R18-H250-0.68-35 | ||
35 MPa | |||
t: 250 mm | |||
: 0.68 + 0.2% | |||
19 | R19-H150-0.8-35 | ||
35 MPa | |||
t: 150 mm | |||
: 0.8 + 0.2% | |||
20 | R20-H200-0.8-35 | ||
35 MPa | |||
t: 200 mm | |||
: 0.8 + 0.2% | |||
21 | R21-H250-0.8-35 | ||
35 MPa | |||
t: 250 mm | |||
: 0.8 + 0.2% | |||
22 | R22-H150-0.96-35 | ||
35 MPa | |||
t: 150 mm | |||
: 0.96 + 0.2% | |||
23 | R23-H200-0.96-35 | ||
35 MPa | |||
t: 200 mm | |||
: 0.96 + 0.2% | |||
24 | R24-H250-0.96-35 | ||
35 MPa | |||
t: 250 mm | |||
: 0.96 + 0.2% | |||
25 | R25-P150-0-45 | ||
45 MPa | |||
t: 150 mm | |||
: 0% | |||
26 | R26-P200-0-45 | ||
45 MPa | |||
t: 200 mm | |||
: 0% | |||
27 | R27-P250-0-45 | ||
45 MPa | |||
t: 250 mm | |||
: 0% | |||
28 | R28-H150-0.68-45 | ||
45 MPa | |||
t: 150 mm | |||
: 0.68 + 0.2% | |||
29 | R29-H200-0.68-45 | ||
45 MPa | |||
t: 200 mm | |||
: 0.68 + 0.2% | |||
30 | R30-H250-0.68-45 | ||
45 MPa | |||
t: 250 mm | |||
: 0.68 + 0.2% | |||
31 | R31-H150-0.8-45 | ||
45 MPa | |||
t: 150 mm | |||
: 0.8 + 0.2% | |||
32 | R32-H200-0.8-45 | ||
45 MPa | |||
t: 200 mm | |||
: 0.8 + 0.2% | |||
33 | R33-H250-0.8-45 | ||
45 MPa | |||
t: 250 mm | |||
: 0.8 + 0.2% | |||
34 | R34-H150-0.96-45 | ||
45 MPa | |||
t: 150 mm | |||
: 0.96 + 0.2% | |||
35 | R35-H200-0.96-45 | ||
45 MPa | |||
t: 200 mm | |||
: 0.96 + 0.2% | |||
36 | R36-H250-0.96-45 | ||
45 MPa | |||
t: 250 mm | |||
: 0.96 + 0.2% |
References
- Nie, Q.; Zhou, C.; Li, H.; Shu, X.; Gong, H.; Huang, B. Numerical simulation of fly ash concrete under sulfate attack. Constr. Build. Mater. 2015, 84, 261–268. [Google Scholar] [CrossRef]
- Wang, H.; Ozer, H.; Al-Qadi, I.L.; Duarte, C.A. Analysis of near-surface cracking under critical loading conditions using uncracked and cracked pavement models. J. Transp. Eng. 2013, 139, 992–1000. [Google Scholar] [CrossRef]
- Zhou, C.; Lan, G.; Cao, P.; Tang, C.; Cao, Q.; Xu, Y.; Feng, D. Impact of freeze-thaw environment on concrete materials in two-lift concrete pavement. Constr. Build. Mater. 2020, 262, 120070. [Google Scholar] [CrossRef]
- Chaddha, S.; Chauhan, A.S.; Chawla, B. A study on the rigid pavement construction, joint and crack formation. Int. J. Mod. Trends Eng. Res. 2017, 4, 138–143. [Google Scholar]
- Alkasah, İ. Hybrid Pavement: Assessment of Rigid and Flexible Pavements Together. Master’s Thesis, Karabük University, Karabük, Turkey, 2020. [Google Scholar]
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Ghazy, A.; Bassuoni, M.T.; Maguire, E.; O’Loan, M. Properties of fiber-reinforced mortars incorporating nano-silica. Fibers 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Thirupathi, N.; Naresh, T.; Harish, B. The behaviour of rigid pavement by nonlinear finite element method. J. Archit. Technol. 2019, 11, 1–5. [Google Scholar]
- Li, B.; Chi, Y.; Xu, L.; Shi, Y.; Li, C. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete. Constr. Build. Mater. 2018, 191, 80–94. [Google Scholar] [CrossRef]
- Ibrahim, I.S.; Wan Jusoh, W.A.; Mohd Sam, A.R.; Mustapa, N.A.; Sk Abdul Razak, S.M. The mechanical properties of steel-polypropylene fibre composites concrete (HyFRCC). Appl. Mech. Mater. 2015, 773–774, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ding, W.; Qiao, Y. Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder. Constr. Build. Mater. 2019, 228, 116706. [Google Scholar] [CrossRef]
- Shi, X.; Park, P.; Rew, Y.; Huang, K.; Sim, C. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension. Constr. Build. Mater. 2020, 233, 117316. [Google Scholar]
- Shan, L.; Zhang, L.; Xu, L.H. Experimental investigations on mechanical properties of hybrid steel-polypropylene fiber-reinforced concrete. Appl. Mech. Mater. 2014, 638–640, 1550–1555. [Google Scholar] [CrossRef]
- Atiş, C.D.; Karahan, O. Properties of steel fiber reinforced fly ash concrete. Constr. Build. Mater. 2009, 23, 392–399. [Google Scholar] [CrossRef]
- Karahan, O.; Atiş, C.D. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater. Des. 2011, 32, 1044–1049. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.-f. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume. Compos. Part B Eng. 2013, 45, 1587–1594. [Google Scholar] [CrossRef]
- Ali, B.; Qureshi, L.A.; Shah, S.H.A.; Rehman, S.U.; Hussain, I.; Iqbal, M. A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Constr. Build. Mater. 2020, 251, 118980. [Google Scholar] [CrossRef]
- Koushkbaghi, M.; Kazemi, M.J.; Mosavi, H.; Mohseni, E. Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Constr. Build. Mater. 2019, 202, 266–275. [Google Scholar] [CrossRef]
- Ali, B.; Raza, S.S.; Hussain, I.; Iqbal, M. Influence of different fibers on mechanical and durability performance of concrete with silica fume. Struct. Concr. 2021, 22, 318–333. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Q.; Si, R.; Ma, Y.; Guo, S. Fresh and mechanical performance and freeze-thaw durability of steel fiber-reinforced rubber self-compacting concrete (SRSCC). J. Clean. Prod. 2020, 277, 123180. [Google Scholar] [CrossRef]
- Shakir, H.M.; Al-Tameemi, A.F.; Al-Azzawi, A.A. A review on hybrid fiber reinforced concrete pavements technology. J. Phys. Conf. Ser. 2021, 1895, 012053. [Google Scholar] [CrossRef]
- Pourreza, R. Investigating the Effects of Hybrid Fibres on the Structural Behaviour of Two-Way Slabs. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2014. [Google Scholar]
- Banthia, N.; Gupta, R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices. Mater. Struct. 2004, 37, 707–716. [Google Scholar] [CrossRef]
- Cominoli, L.; Failla, C.; Plizzari, G. Steel and synthetic fibres for enhancing concrete toughness and shrinkage behaviour. In Proceedings of the International Conference of Sustainable Construction Materials and Technologies, Coventry, UK, 11–13 June 2007; pp. 11–13. [Google Scholar]
- Zongcai, D.; Jianhui, L. Mechanical behaviors of concrete combined with steel and synthetic macro-fibers. Int. J. Phys. Sci. 2006, 1, 57–66. [Google Scholar]
- Khitab, A.; Arshad, M.T.; Hussain, N.; Tariq, K.; Ali, S.A.; Kazmi, S.; Munir, M. Concrete reinforced with 0.1 vol% of different synthetic fibers. Life Sci. J. 2013, 10, 934–939. [Google Scholar]
- Hwang, J.-H.; Lee, D.H.; Ju, H.; Kim, K.S.; Seo, S.-Y.; Kang, J.-W. Shear behavior models of steel fiber reinforced concrete beams modifying softened truss model approaches. Materials 2013, 6, 4847–4867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaei, Z.S.; Volz, J.S.; Keener, D.I.; Gliha, B.P. Comparative impact behavior of four long carbon fiber reinforced concretes. Mater. Des. 2014, 55, 212–223. [Google Scholar] [CrossRef]
- Raza, S.S.; Qureshi, L.A.; Ali, B.; Raza, A.; Khan, M.M.; Salahuddin, H. Mechanical properties of hybrid steel–glass fiber-reinforced reactive powder concrete after exposure to elevated temperatures. Arab. J. Sci. Eng. 2020, 45, 4285–4300. [Google Scholar] [CrossRef]
- Afroz, M.; Venkatesan, S.; Patnaikuni, I. Effects of hybrid fibers on the development of high volume fly ash cement composite. Constr. Build. Mater. 2019, 215, 984–997. [Google Scholar] [CrossRef]
- Lau, C.K.; Chegenizadeh, A.; Htut, T.N.; Nikraz, H. Performance of the steel fibre reinforced rigid concrete pavement in fatigue. Buildings 2020, 10, 186. [Google Scholar] [CrossRef]
- Hussain, I.; Ali, B.; Akhtar, T.; Jameel, M.S.; Raza, S.S. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene). Case Stud. Constr. Mater. 2020, 13, e00429. [Google Scholar] [CrossRef]
- Abdulridha, M.A.; Salman, M.M.; Banyhussan, Q.S. Effect polypropylene of fiber on drying shrinkage cracking of concrete pavement using response surface methodology. J. Eng. Sustain. Dev. 2021, 25, 10–21. [Google Scholar] [CrossRef]
- Zokaei, M.; Fakhri, M.; Rahiminezhad, S. A parametric study of jointed plain concrete pavement using finite element modeling. Mod. Appl. Sci. 2017, 11, 75–84. [Google Scholar] [CrossRef]
- Tabatabaie, A.M.; Barenberg, E.J. Structural analysis of concrete pavement systems. Transp. Eng. J. ASCE 1980, 106, 493–506. [Google Scholar] [CrossRef]
- Tayabji, S.D.; Colley, B.E. Analysis of Jointed Concrete Pavements; Tech. Rep. FHWS-RD-86-041; Federal Highway Administration: Washington, DC, USA, 1986.
- Belletti, B.; Cerioni, R.; Meda, A.; Plizzari, G. Experimental and numerical analyses of FRC slabs on grade. In Proceedings of the FRAMCOS5 Conference, Vail, CO, USA, 12–16 April 2004; pp. 973–980. [Google Scholar]
- Khan, M.I.; Khan, A.A.; Yadav, S. Mechanistic Analysis of Rigid Pavement for Wheel Load Stresses by Finite Element Method Considering Different Sub-Grade with Different Percentage of Metal Fibre. Int. J. Eng. Trends Technol. 2018, 55, 61–67. [Google Scholar] [CrossRef]
- Zimmer, J.; Klein, D.; Stommel, M. Experimental and Numerical Analysis of Liquid-Forming. Key Eng. Mater. 2015, 651–653, 842–847. [Google Scholar] [CrossRef]
- Elnaga, I.M.A. Using of finite element in developing a new method for rigid pavement analysis. Int. J. Civ. Eng. Technol. 2014, 5, 69–75. [Google Scholar]
- Trujillo, P.B.; Guerrero, M.A.S. Effect of temperature gradients on the behaviour of jointed plain concrete pavements. Rev. IBRACON Estrut. E Mater. 2019, 12, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Packard, R.G. Thickness Design for Concrete Highway and Street Pavements; Canadian Portland Cement Association: Ottawa, ON, Canada, 1984. [Google Scholar]
- Huang, Y.H. Pavement Analysis and Design; Pearson: London, UK, 2004. [Google Scholar]
- Garber, N.J.; Hoel, L.A. Traffic and Highway Engineering; Cengage Learning: Boston, MA, USA, 2019. [Google Scholar]
- Sadeghi, V.; Hesami, S. Investigation of load transfer efficiency in jointed plain concrete pavements (JPCP) using FEM. Int. J. Pavement Res. Technol. 2018, 11, 245–252. [Google Scholar] [CrossRef]
- Jafarifar, N. Shrinkage Behaviour of Steel-Fibre-Reinforced-Concrete Pavements. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2012. [Google Scholar]
- Congress, I.R. Guidelines for the Design of Plain Jointed Rigid Pavements for Highways; IRC 58-2002; The Indian Roads Congress: New Delhi, India, 2002. [Google Scholar]
- Shoukry, S.N.; Fahmy, M.; Prucz, J.; William, G. Validation of 3DFE analysis of rigid pavement dynamic response to moving traffic and nonlinear temperature gradient effects. Int. J. Geomech. 2007, 7, 16–24. [Google Scholar] [CrossRef]
- Das, A. Analysis of Pavement Structures; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Mahrenholtz, O.H. Beam on viscoelastic foundation: An extension of Winkler’s model. Arch. Appl. Mech. 2010, 80, 93–102. [Google Scholar] [CrossRef]
- Kausel, E. Early history of soil–structure interaction. Soil Dyn. Earthq. Eng. 2010, 30, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Ioannides, A.M. Concrete pavement analysis: The first eighty years. Int. J. Pavement Eng. 2006, 7, 233–249. [Google Scholar] [CrossRef]
- Westergaard, H.M. Stresses in Concrete Pavements Computed by Theoretical Analysis; Public Roads; Federal Highway Administration: Washington, DC, USA, 1926.
- Сervenka, V.; Jendele, L.; Cervenka, J. ATENA Program Documentation. Part 1. Theory; Cervenka Consulting: Prague, Czech Republic, 2020; 344p. [Google Scholar]
- Cervenka, V.; Cervenka, J.; Janda, Z.; Pryl, D. ATENA Program Documentation, Part 8: User’s Manual for ATENA-GiD Interface; Cervenka Consulting: Prague, Czech Republic, 2017. [Google Scholar]
- Sorelli, L.G.; Meda, A.; Plizzari, G.A. Steel fiber concrete slabs on ground: A structural matter. ACI Mater. J. 2006, 103, 551–558. [Google Scholar]
- Shakir, H.M.; Al-Azzawi, A.A.; Al-Tameemi, A.F. Nonlinear Finite Element Analysis of Fiber Reinforced Concrete Pavement under Dynamic Loading. J. Eng. 2022, 28, 81–98. [Google Scholar] [CrossRef]
fc’ (MPa) | Thickness | Hybrid Fibers (Steel Fiber + Macro-Synthetic Fiber) % | |||
---|---|---|---|---|---|
t (mm) | 0 | (0.68 + 0.2)% | (0.8 + 0.2)% | (0.96 + 0.2)% | |
25 | 150 | R1-P150-0-25 | R4-H150-0.68-25 | R7-H150-0.8-25 | R10-H150-0.96-25 |
200 | R2-P200-0-25 | R5-H200-0.68-25 | R8-H200-0.8-25 | R11-H200-0.96-25 | |
250 | R3-P250-0-25 | R6-H250-0.68-25 | R9-H250-0.8-25 | R12-H250-0.96-25 | |
35 | 150 | R13-P150-0-35 | R16-H150-0.68-35 | R19-H150-0.8-35 | R22-H150-0.96-35 |
200 | R14-P200-0-35 | R17-H200-0.68-35 | R20-H200-0.8-35 | R23-H200-0.96-35 | |
250 | R15-P250-0-35 | R18-H250-0.68-35 | R21-H250-0.8-35 | R24-H250-0.96-35 | |
45 | 150 | R25-P150-0-45 | R28-H150-0.68-45 | R31-H150-0.8-45 | R34-H150-0.96-45 |
200 | R26-P200-0-45 | R29-H200-0.68-45 | R32-H200-0.8-45 | R35-H200-0.96-45 | |
250 | R27-P250-0-45 | R30-H250-0.68-45 | R33-H250-0.8-45 | R36-H250-0.96-45 |
Steel fibers | Fiber type | - | Hooked |
Fiber length | (mm) | 50 | |
Fiber diameter | (mm) | 1.1 | |
Ultimate tensile strength | MPa | 1100 | |
Macro synthetic fibers | Fiber length | (mm) | 40 |
Fiber diameter | (mm) | 0.45 | |
Ultimate tensile strength | MPa | 620 |
No. | Specimens Name | Experimental | Finite Element |
---|---|---|---|
(kN) | (kN) | ||
1 | Reference 200 | 847.9 | 863.15 |
2 | HFR200-0.68/0.2 | 978.1 | 1008.69 |
3 | HFR200-0.80/0.2 | 1029.9 | 1014.63 |
4 | HFR200-0.96/0.2 | 1117.6 | 1100.32 |
5 | Reference 250 | 1147.6 | 1143.01 |
6 | HFR250-0.68/0.2 | 1375.5 | 1336.8 |
7 | HFR250-0.80/0.2 | 1300.2 | 1350.38 |
8 | HFR250-0.96/0.2 | 1386.5 | 1486.68 |
fc’ (MPa) | Thickness t (mm) | Hybrid Fibers (Steel Fiber + Macro-Synthetic Fiber) % | ||||||
---|---|---|---|---|---|---|---|---|
0% | (0.68 + 0.2)% | Improvement Rate % | (0.8 + 0.2)% | Improvement Rate % | (0.96 + 0.2)% | Improvement Rate % | ||
25 | 150 | 140.17 | 241.79 | 72.50% | 233.12 | 66.3% | 221.04 | 57.7% |
200 | 228.28 | 356.01 | 55.90% | 300.91 | 31.8% | 296.76 | 30.0% | |
250 | 282.73 | 437.6 | 54.80% | 425.71 | 50.6% | 418.53 | 48.0% | |
35 | 150 | 178.38 | 284.35 | 59.40% | 273.1 | 53.1% | 271.19 | 52.0% |
200 | 278.41 | 416.08 | 49.40% | 378.12 | 35.8% | 366.22 | 31.5% | |
250 | 365.26 | 543.56 | 48.80% | 514.45 | 40.8% | 500.84 | 37.1% | |
45 | 150 | 235.06 | 337.74 | 43.70% | 330.3 | 28.6% | 300.98 | 30.0% |
200 | 330.61 | 457.43 | 38.40% | 437.6 | 32.4% | 434.38 | 31.4% | |
250 | 433.51 | 618.73 | 42.70% | 590.67 | 36.2% | 578.19 | 33.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Harki, B.Q.K.; Al Jawahery, M.S.; Abdulmawjoud, A.A. Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis. Coatings 2022, 12, 1478. https://doi.org/10.3390/coatings12101478
Al Harki BQK, Al Jawahery MS, Abdulmawjoud AA. Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis. Coatings. 2022; 12(10):1478. https://doi.org/10.3390/coatings12101478
Chicago/Turabian StyleAl Harki, Bakhtiyar Q. Khawaja, Mohammed S. Al Jawahery, and Ayman A. Abdulmawjoud. 2022. "Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis" Coatings 12, no. 10: 1478. https://doi.org/10.3390/coatings12101478
APA StyleAl Harki, B. Q. K., Al Jawahery, M. S., & Abdulmawjoud, A. A. (2022). Hybrid Steel Fiber of Rigid Pavements: A 3D Finite Element and Parametric Analysis. Coatings, 12(10), 1478. https://doi.org/10.3390/coatings12101478