Flexible Micro-Sensor Packaging and Durability for Real-Time Monitoring of Vanadium Flow Batteries
Abstract
:1. Introduction
2. Process and Packaging of Micro-Sensor
3. Packaging and Endurance Testing of Micro-Sensor
3.1. Micro-Sensor Housing Processing
3.2. Testing of Micro-Sensor Finished Product
3.2.1. Corrosion Resistance Test of Housing
3.2.2. Tightness Test of the Shell
3.3. Micro-Sensors Embedded in Vanadium Flow Batteries for Durability and Corrosion Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rahman, M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Mutezo, G.; Mulopo, J. A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles. Renew. Sustain. Energy Rev. 2021, 137, 110609–110623. [Google Scholar] [CrossRef]
- Nair, S.; Timms, W. Freshwater footprint of fossil fuel production and thermal electricity generation and water stresses across the National Electricity Market (NEM) region of Australia. J. Clean. Prod. 2020, 267, 122085. [Google Scholar] [CrossRef]
- Nong, D.; Simshauser, P.; Nguyen, D.B. Non-CO2 greenhouse gases and climate change. Nature 2021, 476, 11723–11733. [Google Scholar]
- Ashfaq, S.; Tang, Y.; Maqbool, R. Volatility spillover impact of world oil prices on leading Asian energy exporting and importing economies’ stock returns. Energy 2019, 188, 116002. [Google Scholar] [CrossRef]
- Clerides, S.; Krokida, S.I.; Lambertides, N.; Tsouknidis, D. What matters for consumer sentiment in the euro area? World crude oil price or retail gasoline price? Energy Econ. 2022, 20, 105743–105753. [Google Scholar] [CrossRef]
- Skea, J.; Diemen, R.V.; Pereira, J.P.; Khourdajie, A.A. Outlooks, explorations and normative scenarios: Approaches to global energy futures compared. Technol. Forecast. Soc. Chang. 2021, 168, 120736–120754. [Google Scholar] [CrossRef]
- Manohar, A.K.; Kim, K.M.; Plichta, E.; Hendrickson, M.; Rawlings, S.; Narayanan, S.R. A High Efficiency Iron-Chloride Redox Flow Battery for Large-Scale Energy Storage. J. Electrochem. Soc. 2015, 163, A5118–A5125. [Google Scholar] [CrossRef]
- Alphonse, P.-J.; Elden, G. The investigation of thermal behavior in a vanadium redox flow battery during charge and discharge processes. J. Energy Storage 2021, 40, 102770. [Google Scholar] [CrossRef]
- Huang, Z.; Mu, A.; Wu, L.; Wang, H.; Zhang, Y. Electrolyte flow optimization and performance metrics analysis of vanadium redox flow battery for large-scale stationary energy storage. Int. J. Hydrogen Energy 2021, 46, 31952–31962. [Google Scholar] [CrossRef]
- Gundlapalli, R.; Jayanti, S. Effect of channel dimensions of serpentine flow fields on the performance of a vanadium redox flow battery. J. Energy Storage 2019, 23, 148–158. [Google Scholar] [CrossRef]
- Yang, W.; He, Y.; Li, Y. Performance Modeling of a Vanadium Redox Flow Battery during Discharging. Electrochim. Acta 2015, 155, 279–287. [Google Scholar] [CrossRef]
- Abbas, Q.; Mirzaeian, M.; Gibson, D. Vanadium Air/Redox Flow Batteries. Encycl. Smart Mater. 2021, 2, 198–207. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhao, T.; An, L.; Zhou, X.; Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 2015, 300, 438–443. [Google Scholar] [CrossRef]
- Doetsch, C.; Burfeind, J. 17—Vanadium redox flow batteries. In Storing Energy, 2nd ed.; with Special Reference to Renewable Energy Sources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 363–381. [Google Scholar]
- Mehrjerdi, H. Dynamic and multi-stage capacity expansion planning in microgrid integrated with electric vehicle charging station. J. Energy Storage 2020, 29, 101351. [Google Scholar] [CrossRef]
- Shang, Y.; Wu, W.; Guo, J.; Ma, Z.; Sheng, W.; Lv, Z.; Fu, C. Stochastic dispatch of energy storage in microgrids: An augmented reinforcement learning approach. Appl. Energy 2020, 261, 114423. [Google Scholar] [CrossRef]
- Ranjan, M.; Shankar, R. A literature survey on load frequency control considering renewable energy integration in power system: Recent trends and future prospects. J. Energy Storage 2021, 45, 103717. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, F.; Zou, Y.; Yang, X. Quantifying energy flexibility of commuter plug-in electric vehicles within a residence–office coupling virtual microgrid. Part I: System configuration, quantification framework, and optimization model. Energy Build. 2022, 254, 111551–111563. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; He, Z.; Das, R.; Dong, B.; Xie, X.; Guo, Z. An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. J. Mater. Sci. Technol. 2021, 69, 212–227. [Google Scholar] [CrossRef]
- Kazacos, M.; Cheng, M. Vanadium redox cell electrolyte optimization studies. J. Appl. Electrochem. 1990, 20, 463–467. [Google Scholar] [CrossRef]
- Liu, T.; Li, X.; Zhang, H.; Chen, J. Greenhouse gas emissions vs. CO2 emissions: Comparative analysis of a global carbon tax. Appl. Energy 2018, 298, 1292–1303. [Google Scholar] [CrossRef]
- Duan, Z.; Qu, Z.; Wang, Q.; Wang, J. Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance. Appl. Energy 2019, 250, 1632–1640. [Google Scholar] [CrossRef]
- Huang, R.; Urban, A.; Jiao, D.; Zhe, J.; Choi, J.-W. Inductive proximity sensors within a ceramic package manufactured by material extrusion of binder-coated zirconia. Sens. Actuators A Phys. 2022, 338, 113497–113508. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lee, S.-J.; Chen, C.-H.; Hsieh, C.-L.; Wen, S.-H.; Chiu, C.-W.; Jiang, C.-A. Internal real-time microscopic diagnosis of vanadium redox flow battery. Sens. Actuators A Phys. 2020, 314, 112259. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Hsieh, C.-L.; Chen, C.-H.; Yang, L.-J.; Dai, C.-L.; Jiang, C.-A.; Chen, Y.-C. Flexible Micro-Sensor Packaging and Durability for Real-Time Monitoring of Vanadium Flow Batteries. Coatings 2022, 12, 1531. https://doi.org/10.3390/coatings12101531
Lee C-Y, Hsieh C-L, Chen C-H, Yang L-J, Dai C-L, Jiang C-A, Chen Y-C. Flexible Micro-Sensor Packaging and Durability for Real-Time Monitoring of Vanadium Flow Batteries. Coatings. 2022; 12(10):1531. https://doi.org/10.3390/coatings12101531
Chicago/Turabian StyleLee, Chi-Yuan, Chin-Lung Hsieh, Chia-Hung Chen, Lung-Jieh Yang, Ching-Liang Dai, Chong-An Jiang, and Yu-Chun Chen. 2022. "Flexible Micro-Sensor Packaging and Durability for Real-Time Monitoring of Vanadium Flow Batteries" Coatings 12, no. 10: 1531. https://doi.org/10.3390/coatings12101531
APA StyleLee, C. -Y., Hsieh, C. -L., Chen, C. -H., Yang, L. -J., Dai, C. -L., Jiang, C. -A., & Chen, Y. -C. (2022). Flexible Micro-Sensor Packaging and Durability for Real-Time Monitoring of Vanadium Flow Batteries. Coatings, 12(10), 1531. https://doi.org/10.3390/coatings12101531