Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Coatings
2.2. Material Characterizations
2.3. Electrochemical Measurements
2.4. Interfacial Contact Resistance (ICR) and Water Contact Angle Measurements
3. Results
3.1. Phase Structure
3.2. Surface Morphology
3.3. Electrochemical Test
3.4. ICR and Contact Angle
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, W.; Zhang, Y.; Chen, L.; Luo, J.; Pang, P.; Zhang, X.; Liao, B.; Ying, M. Corrosion behavior and interfacial conductivity of amorphous hydrogenated carbon and titanium carbide composite (a-C: H/TiC) films prepared on titanium bipolar plates in PEMFCs. Diam. Relat. Mater. 2021, 120, 108628–108637. [Google Scholar] [CrossRef]
- Mingge, W.; Congda, L.; Tao, H.; Guohai, C.; Donghui, W.; Haifeng, Z.; Dong, Z.; Aiying, W. Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell. Surf. Coat. Technol. 2016, 307, 374–381. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, L.; Yi, P.; Peng, L. Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs. Int. J. Hydrog. Energy 2016, 41, 1142–1150. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Muneshwar, T.P.; Fan, H.-Q.; Cadien, K.; Luo, J.-L. Achieving ultrahigh corrosion resistance and conductive zirconium oxynitride coating on metal bipolar plates by plasma enhanced atomic layer deposition. J. Power Sources 2018, 397, 32–36. [Google Scholar] [CrossRef]
- Jin, J.; He, Z.; Zhao, X. Effect of Al content on the corrosion resistance and conductivity of metal nitride coating in the cathode environment of PEMFCs. Mater. Chem. Phys. 2020, 245, 122739. [Google Scholar] [CrossRef]
- Lee, S.H.; Kakati, N.; Maiti, J.; Jee, S.H.; Kalita, D.J.; Yoon, Y.S. Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells. Thin Solid Film. 2013, 529, 374–379. [Google Scholar] [CrossRef]
- Yi, P.; Zhang, W.; Bi, F.; Peng, L.; Lai, X. Microstructure and properties of a-C films deposited under different argon flow rate on stainless steel bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2019, 410–411, 188–195. [Google Scholar] [CrossRef]
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E.H.; Daud, W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrog. Energy 2017, 42, 9135–9148. [Google Scholar] [CrossRef]
- Zhang, D.; Yi, P.; Peng, L.; Lai, X.; Pu, J. Amorphous carbon films doped with silver and chromium to achieve ultra-low interfacial electrical resistance and long-term durability in the application of proton exchange membrane fuel cells. Carbon 2019, 145, 333–344. [Google Scholar] [CrossRef]
- Yi, P.; Zhang, D.; Peng, L.; Lai, X. Impact of Film Thickness on Defects and the Graphitization of Nanothin Carbon Coatings Used for Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2018, 10, 34561–34572. [Google Scholar] [CrossRef] [PubMed]
- Suherman, H.; Sulong, A.B.; Sahari, J. Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram. Int. 2013, 39, 1277–1284. [Google Scholar] [CrossRef]
- Li, W.; Liu, L.-T.; Li, Z.-X.; Wang, Y.-F.; Li, H.-Z.; Lei, J.-J. Corrosion resistance and conductivity of amorphous carbon coated SS316L and TA2 bipolar plates in proton-exchange membrane fuel cells. Diam. Relat. Mater. 2021, 118, 108503. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Sun, J.; Lv, Y.; Li, S.; Ji, S.; Wen, Z. Niobium nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Power Sources 2012, 199, 195–200. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, P.; Han, Y.; Wang, H.; Wang, X.; Yu, Y.; Sun, J. Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC. Int. J. Hydrog. Energy 2020, 45, 10050–10058. [Google Scholar] [CrossRef]
- Show, Y.; Miki, M.; Nakamura, T. Increased in output power from fuel cell used metal bipolar plate coated with a-C film. Diam. Relat. Mater. 2007, 16, 1159–1161. [Google Scholar] [CrossRef]
- Yi, P.; Zhang, D.; Qiu, D.; Peng, L.; Lai, X. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2019, 44, 6813–6843. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.; Zhu, L.; Jian, X.; Wang, Z.; Jiang, L. Anticorrosion properties of Ta-coated 316L stainless steel as bipolar plate material in proton exchange membrane fuel cells. J. Power Sources 2009, 191, 495–500. [Google Scholar] [CrossRef]
- Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S.M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells. J. Power Sources 2016, 322, 1–9. [Google Scholar] [CrossRef]
- Choe, C.; Choi, H.; Hong, W.; Lee, J.-J. Tantalum nitride coated AISI 316L as bipolar plate for polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2012, 37, 405–411. [Google Scholar] [CrossRef]
- Tu, R.; Min, R.; Yang, M.; Yuan, Y.; Zheng, L.; Li, Q.; Ji, B.; Zhang, S.; Yang, M.; Shi, J. Overcoming the Dilemma between Low Electrical Resistance and High Corrosion Resistance Using a Ta/(Ta,Ti)N/TiN/Ti Multilayer for Proton Exchange Membrane Fuel Cells. Coatings 2022, 12, 689–704. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, H.; Li, R.; Geng, J.; Shao, Z. Nb–Cr–C coated titanium as bipolar plates for proton exchange membrane fuel cells. J. Power Sources 2022, 520, 230797–230805. [Google Scholar] [CrossRef]
- Hu, Q.; Gao, J.-Y.; Shu, S.; Xu, Y.-X.; Luo, J.-L.; Wang, X.-Z. Corrosion behaviors of multilayer C/Cr/SS bipolar plates for proton exchange membrane fuel cells under dynamic potential polarization based on New European Driving Cycle. Corros. Sci. 2023, 214, 111032. [Google Scholar] [CrossRef]
- Zhao, T.; Shen, S.; Liu, X.; Guo, Y.; Pao, C.-W.; Chen, J.-L.; Wang, Y. Morphology-maintaining synthesis of NbN and its catalytic performance in epoxidation. Catal. Sci. Technol. 2019, 9, 4002–4009. [Google Scholar] [CrossRef]
- Bi, F.; Yi, P.; Zhou, T.; Peng, L.; Lai, X. Effects of Al incorporation on the interfacial conductivity and corrosion resistance of CrN film on SS316L as bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2015, 40, 9790–9802. [Google Scholar] [CrossRef]
- Peng, S.; Xu, J.; Li, Z.; Jiang, S.; Munroe, P.; Xie, Z.-H.; Lu, H. A reactive-sputter-deposited TiSiN nanocomposite coating for the protection of metallic bipolar plates in proton exchange membrane fuel cells. Ceram. Int. 2020, 46, 2743–2757. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, J.; Hu, M.; Li, X. Investigation of high potential corrosion protection with titanium carbonitride coating on 316L stainless steel bipolar plates. Corros. Sci. 2021, 191, 109757. [Google Scholar] [CrossRef]
- Gou, Y.; Jiang, G.; Hao, J.; Shao, Z.; Wei, Z. A corrosion mechanism of NbC/α-C:H films for metallic bipolar plates in proton exchange membrane fuel cell cathode based on percolation model. Surf. Coat. Technol. 2022, 445, 128711. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L. Characterization and properties of NbN–Nb bilayer formed on titanium for bipolar plates. Mater. Chem. Phys. 2022, 290, 126628–126636. [Google Scholar] [CrossRef]
- Jin, J.; Hu, M.; Zhao, X. Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications. Int. J. Hydrog. Energy 2020, 45, 23310–23326. [Google Scholar] [CrossRef]
- Wang, H. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 2003, 115, 243–251. [Google Scholar] [CrossRef]
- Tang, Y.; Yuan, W.; Pan, M.; Wan, Z. Feasibility study of porous copper fiber sintered felt: A novel porous flow field in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 9661–9677. [Google Scholar] [CrossRef]
- Chen, M.; Ding, J.C.; Kwon, S.-H.; Wang, Q.; Zhang, S. Corrosion resistance and conductivity of NbN-coated 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Corros. Sci. 2022, 196, 110042–110052. [Google Scholar] [CrossRef]
- Lamour, P.; Fioux, P.; Ponche, A.; Nardin, M.; Vallat, M.F.; Dugay, P.; Brun, J.P.; Moreaud, N.; Pinvidic, J.M. Direct measurement of the nitrogen content by XPS in self-passivated TaNx thin films. Surf. Interface Anal. 2008, 40, 1430–1437. [Google Scholar] [CrossRef]
- Kościelska, B.; Winiarski, A. Structural investigations of nitrided Nb2O5 and Nb2O5–SiO2 sol–gel derived films. J. Non-Cryst. Solids 2008, 354, 4349–4353. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S.; Zheng, J.; Dong, Y.; Zhang, C.; Li, J.; Chen, Z.; Zhang, J.; Sun, D. Excellent anti-corrosion and conductivity of NbN coated on Ti bipolar plate by controlling N2 flow rates. J. Alloys Compd. 2024, 976, 173033. [Google Scholar] [CrossRef]
- Jeong, J.J.; Lee, C.M. Effects of post-deposition annealing on the mechanical and chemical properties of the Si3N4/NbN multilayer coatings. Appl. Surf. Sci. 2003, 214, 11–19. [Google Scholar] [CrossRef]
- Ufuktepe, Y.; Farha, A.H.; Kimura, S.I.; Hajiri, T.; Imura, K.; Mamun, M.A.; Karadag, F.; Elmustafa, A.A.; Elsayed-Ali, H.E. Superconducting niobium nitride thin films by reactive pulsed laser deposition. Thin Solid Film. 2013, 545, 601–607. [Google Scholar] [CrossRef]
- Ingle, A.V.; Raja, V.S.; Rangarajan, J.; Mishra, P. Corrosion resistant quaternary Al–Cr–Mo–N coating on type 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2020, 45, 3094–3107. [Google Scholar] [CrossRef]
- Pan, T.J.; Dai, Y.J.; Jiang, J.; Xiang, J.H.; Yang, Q.Q.; Li, Y.S. Anti-corrosion performance of the conductive bilayer CrC/CrN coated 304SS bipolar plate in acidic environment. Corros. Sci. 2022, 206, 110495–110506. [Google Scholar] [CrossRef]
- Li, R.; Cai, Y.; Wippermann, K.; Lehnert, W. Bilayer CrN/Cr coating-modified 316L stainless steel bipolar plates for high temperature polymer electrolyte fuel cells. J. Power Sources 2019, 434, 226718–226725. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, P.; Peng, L.; Lai, X. Strategy of alternating bias voltage on corrosion resistance and interfacial conductivity enhancement of TiCx/a-C coatings on metallic bipolar plates in PEMFCs. Energy 2018, 162, 933–943. [Google Scholar] [CrossRef]
- Wang, X.-H.; Wang, J.-H.; Fu, C.-W. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques. Trans. Nonferrous Met. Soc. China 2014, 24, 3907–3916. [Google Scholar] [CrossRef]
- Yan, P.; Ying, T.; Yang, Y.; Cao, F.; Li, Y.; Wang, J.; Zeng, X. Investigation of anodized Ta/Ag coating on magnesium bipolar plate for lightweight proton exchange membrane fuel cells. Corros. Sci. 2022, 197, 110086. [Google Scholar] [CrossRef]
- Wang, L.; Tao, Y.; Zhang, Z.; Wang, Y.; Feng, Q.; Wang, H.; Li, H. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2019, 44, 4940–4950. [Google Scholar] [CrossRef]
- Jannat, S.; Rashtchi, H.; Atapour, M.; Golozar, M.A.; Elmkhah, H.; Zhiani, M. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. J. Power Sources 2019, 435, 226818. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Liu, H.; Wang, S.; Fang, H.; Gao, H.; Gao, K.; Zhang, Y.; Sun, J.; Yan, J. Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell. J. Power Sources 2018, 399, 343–349. [Google Scholar] [CrossRef]
- Yi, P.; Peng, L.; Zhou, T.; Wu, H.; Lai, X. Cr–N–C multilayer film on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells using closed field unbalanced magnetron sputter ion plating. Int. J. Hydrog. Energy 2013, 38, 1535–1543. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Gao, K.; Liu, R. Adjustable TiN coatings deposited with HiPIMS on titanium bipolar plates for PEMFC. Int. J. Hydrog. Energy 2022, 47, 39215–39224. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Li, P.; Jing, B.; Li, S.; Wen, Z.; Ji, S. Niobized AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell. J. Power Sources 2012, 208, 397–403. [Google Scholar] [CrossRef]
Samples | Ta (at. %) | Nb (at. %) | N (at. %) |
---|---|---|---|
TaNbN-0.5 | 26.74 | 16.39 | 56.88 |
TaNbN-1.0 | 29.26 | 19.78 | 50.96 |
TaNbN-1.5 | 28.91 | 19.47 | 51.62 |
TaNbN-2.0 | 28.29 | 15.10 | 56.61 |
Samples | OCP | Ecorr/V | cm−2 | cm−2 |
---|---|---|---|---|
316L SS | −0.185 | −0.283 | 41.9 | 26.46 |
TaNbN-0.5 | 0.031 | −0.075 | 0.022 | 0.25 |
TaNbN-1.0 | 0.028 | −0.082 | 0.023 | 0.43 |
TaNbN-1.5 | 0.006 | −0.107 | 0.035 | 0.86 |
TaNbN-2.0 | 0.005 | −0.143 | 0.043 | 0.83 |
Samples | Fe/ppm | Cr/ppm | Ni/ppm | Ta/ppm | Nb/ppm | Total/ppm |
---|---|---|---|---|---|---|
316L SS | 9.3 | 1.53 | 0.37 | - | - | 11.2 |
TaNbN-0.5 | - | - | - | 0.15 | 0.41 | 0.56 |
TaNbN-1.0 | - | - | - | 0.21 | 0.43 | 0.64 |
TaNbN-1.5 | - | - | - | 0.25 | 0.51 | 0.76 |
TaNbN-2.0 | - | - | - | 0.27 | 0.52 | 0.79 |
Samples | cm2 | CPEd/Ω−1cm−2sn | cm2 | nd | CPEp/Ω−1cm−2sn | np | cm2 |
---|---|---|---|---|---|---|---|
316L SS | 12.48 | 5.427 × 10−4 | 9728 | 0.75 | 1.073 × 10−4 | 0.89 | 914.2 |
TaNbN-0.5 | 11.79 | 5.726 × 10−5 | 3.844 × 105 | 0.92 | - | - | - |
TaNbN-1.0 | 8.49 | 8.747 × 10−5 | 1.967 × 105 | 0.94 | - | - | - |
TaNbN-1.5 | 8.61 | 9.322 × 10−5 | 2.835 × 105 | 0.91 | - | - | - |
TaNbN-2.0 | 8.304 | 1.377 × 10−4 | 1.678 × 105 | 0.92 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ding, C.; Yang, M.; Yang, M.; Gao, T.; Zhang, S.; Ji, B.; Goto, T.; Tu, R. Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells. Coatings 2024, 14, 542. https://doi.org/10.3390/coatings14050542
Li Q, Ding C, Yang M, Yang M, Gao T, Zhang S, Ji B, Goto T, Tu R. Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells. Coatings. 2024; 14(5):542. https://doi.org/10.3390/coatings14050542
Chicago/Turabian StyleLi, Qizhong, Chuan Ding, Mai Yang, Meijun Yang, Tenghua Gao, Song Zhang, Baifeng Ji, Takashi Goto, and Rong Tu. 2024. "Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells" Coatings 14, no. 5: 542. https://doi.org/10.3390/coatings14050542
APA StyleLi, Q., Ding, C., Yang, M., Yang, M., Gao, T., Zhang, S., Ji, B., Goto, T., & Tu, R. (2024). Corrosion Resistance and Conductivity of Ta-Nb-N-Coated 316L Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells. Coatings, 14(5), 542. https://doi.org/10.3390/coatings14050542