Physico-Chemical Origins of Electrical Characteristics and Instabilities in Solution-Processed ZnSnO Thin-Film Transistors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, J.K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Technol. 2011, 26, 034008. [Google Scholar] [CrossRef]
- Shao, F.; Wan, Q. Recent progress on jet printing of oxide-based thin film transistors. J. Phys. D Appl. Phys. 2019, 52, 143002. [Google Scholar] [CrossRef]
- Park, J.W.; Kang, B.H.; Kim, H.J.; Zhang, Z. A Review of Low-Temperature Solution-processed Metal Oxide Thin-Film Transistors for Flexible Electronics. Adv. Funct. Mater. 2021, 30, 1904632. [Google Scholar] [CrossRef]
- Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y. Comprehensive Review on Amorphous Oxide Semiconductor Thin Film Transistor. Trans. Electr. Electron. Mater. 2020, 21, 235–248. [Google Scholar] [CrossRef]
- Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous Oxide Semiconductors for High Performance Flexible Thin-Film Transistors. Jpn. J. Appl. Phys. 2006, 45, 4303. [Google Scholar] [CrossRef]
- Kumomi, H.; Kamiya, T.; Hosono, H. Advances in Oxide Thin-Film Transistors in Recent Decade and Their Future. ECS Trans. 2015, 67, 3. [Google Scholar] [CrossRef]
- Lee, D.-H.; Chang, Y.-J.; Herman, G.S.; Chang, C.-H. A General Route to Printable High-Mobility Transparent Amorphous Oxide Semiconductors. Adv. Mater. 2007, 19, 843–847. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef]
- Lee, W.-Y.; Lee, H.; Ha, S.; Lee, C.; Bae, J.-H.; Kang, I.-M.; Kim, K.; Jang, J. Effect of Mg doping on the electrical performance of a Sol-Gel-Processed SnO2 thin-film transistor. Electronics 2020, 9, 523. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide Semiconductor thin-film Transistors: A Review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; He, Y.; Jiang, S.; Zhu, L.; Chen, C.; Wan, Q. Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and application. J. Semicond. 2021, 42, 031101. [Google Scholar] [CrossRef]
- Kim, D.-K.; Park, J.; Vincent, P.; Park, J.-I.; Jang, J.; Kang, I.M.; Kim, H.; Lang, P.; Bae, J.-H. Numerical Design of Carrier Transporting Layer in Top-Gate InGaZnO Thin-Film Transistors for Controlling Potential Energy. J. Nanosci. Nanotechnol. 2021, 21, 3847–3852. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-I.; Kim, D.-K.; Lee, H.; Jang, J.; Park, J.; Kim, H.; Lang, P.; Bae, J.-H. High performance of solution-processed SnO2 thin-film transistors by promotion of photo-exposure time-dependent carrier transport during the pre-annealing stage. Semicond. Sci. Technol. 2020, 35, 065019. [Google Scholar] [CrossRef]
- Allemang, C.R.; Cho, T.H.; Trejo, O.; Ravan, S.; Rodríguez, R.E.; Dasgupta, N.P.; Peterson, R.L. High-Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition. Adv. Electron. Mater. 2020, 6, 2000195. [Google Scholar] [CrossRef]
- Park, J.S.; Maeng, W.-J.; Kim, H.-S.; Park, J.-S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 2021, 520, 1679–1693. [Google Scholar] [CrossRef]
- Sodhani, A.; Goswami, R.; Kandpal, K. Design of Pixel Circuit Using a IGZO TFTs to Enhance Uniformity of AMOLED Displays by Threshold Voltage Compensation. Arab. J. Sci. Eng. 2021, 46, 9663–9672. [Google Scholar] [CrossRef]
- Moffitt, S.L.; Stallings, K.L.; Falduto, A.F.; Lee, W.; Buchholz, D.B.; Wang, B.; Ma, Q.; Chang, R.P.H.; Marks, T.J.; Bedzyk, M.J. Processing, Structure, and Transistor Performance: Combustion versus Pulsed Laser Growth of Amorphous Oxides. ACS Appl. Electron. Mater. 2019, 1, 548–557. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, S.; Kim, H.J. Review of solution-processed oxide thin-film transistors. Jpn. J. Appl. Phys. 2014, 53, 02BA02. [Google Scholar] [CrossRef] [Green Version]
- Carlos, E.; Branquinho, R.; Barquinha, P.; Martins, R.; Fortunato, E. Chapter 18—New strategies toward high-performance and low-temperature processing of solution-based metal oxide TFTs. In Chemical Solution Synthesis for Materials Design and Thin Film Device Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 585–621. [Google Scholar]
- Jeon, S.-H.; Wang, Z.; Seo, K.-H.; Feng, J.; Zhang, X.; Park, J.; Bae, J.-H. Importance of Solvent Evaporation Temperature in Pre-Annealing Stage for Solution-Processed Zinc Tin Oxide Thin-Film Transistors. Electronics 2022, 11, 2822. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, G.; Li, L.; Xia, W.; Gong, H.; Wang, S. High-performance Zinc-Tin-Oxide thin film transistors based on environment friendly solution process. Curr. Appl. Phys. 2019, 19, 174–181. [Google Scholar] [CrossRef]
- Hwang, Y.-J.; Kim D.-K.; Jeon, S.-H.; Wang, Z.; Park, J.; Lee, S.-H.; Jang, J.; Kang, I.M.; Bae, J.-H. Importance of Structural Relaxation on the Electrical Characteristics and Bias Stability of Solution-Processed ZnSnO Thin-Film Transistors. Nanomaterials 2022, 12, 3097. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Nomura, K.; Hosono, H. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping. J. Disp. Technol. 2009, 5, 273–288. [Google Scholar] [CrossRef]
- Yao, J.; Xu, N.; Deng, S.; Chen, J.; She, J.; Shieh, H.-P.D.; Liu, P.-T.; Huang, Y.-P. Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy. IEEE Trans. Electron Devices 2011, 58, 1121–1126. [Google Scholar]
- Kim, J.-H.; Park, E.-K.; Kim, M.S.; Cho, H.J.; Lee, D.-H.; Kim, J.-H.; Khang, Y.; Park, K.; Kim, Y.-S. Bias and illumination instability analysis of solution-processed a-InGaZnO thin-film transistors with different component ratios. Thin Solid Films 2018, 645, 154–159. [Google Scholar] [CrossRef]
- Jain, V.K.; Kumar, P.; Kumar, M.; Jain, P.; Bhandari, D.; Vijay, Y.K. Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films. J. Alloys Compd. 2011, 509, 3541–3546. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Peng, T.-Y.; Hsieh, W.-T. Realization of a Self-Powered InGaZnO MSM UV Photodetector Using Localized Surface Fluorine Plasma Treatment. ACS Appl. Electron. Mater. 2022, 2, 2976–2983. [Google Scholar] [CrossRef]
- Wang, W.; He, G.; Wang, L.; Zhang, X.X.Y. Solution-Driven HfLaOx-Based Gate Dielectrics for Thin Film Transistors and Unipolar Inverters. IEEE. Trans. Electron Devices 2021, 68, 4437–4443. [Google Scholar] [CrossRef]
- Lee, E.; Kim, T.H.; Lee, S.W.; Kim, J.H.; Kim, J.; Jeong, T.G.; Ahn, J.-H.; Cho, B. Improved electrical performance of a sol-gel IGZO transistor with high-k Al2O3 gate dielectric achieved by post annealing. Nano Converg. 2019, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-S.; Lee, S.-W.; Oh, S.-M.; Cho, W.-J. Development of annealing process for solution-derived high performance InGaZnO thin-film transistors. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2013, 178, 811–815. [Google Scholar] [CrossRef]
- Padma, N.; Sawant, S.N.; Sen, S. Study on post-deposition annealing influenced contribution of hole and electron trapping to threshold voltage stability in organic field effect transistors. Mater. Sci. Semicond. Process. 2015, 30, 18–24. [Google Scholar]
- Kim, Y.J.; Oh, S.; Yang, B.S.; Han, S.J.; Lee, H.W.; Kim, H.J.; Jeong, J.K.; Hwang, C.S.; Kim, H.J. Impact of the cation composition on the electrical performance of solution-processed zinc tin oxide thin-film transistors. ACS Appl. Mater. Interfaces 2014, 6, 14026–14036. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.D.H.; Migliorato, P.; Jang, J. Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors. Appl. Phys. Lett. 2011, 98, 153511. [Google Scholar] [CrossRef]
- Baek, J.H.; Seol, H.; Cho, K.; Yang, H.; Jeong, J.K. Comparative Study of Antimony Doping Effects on the Performance of Solution-Processed ZIO and ZTO Field-Effect Transistors. ACS Appl. Mater. Interfaces 2017, 9, 10904–10913. [Google Scholar] [CrossRef]
- Qin, H.-M.; Yu, G.; Lu, H.; Wu, C.-F.; Tang, L.-F.; Zhou, D.; Ren, F.-F.; Zhang, R.; Zheng, Y.-L.; Huang, X.-M. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors. Chin. Phys. B 2015, 24, 077307. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Hosono, H. Interface and bulk effects for bias—Light-illumination instability in amorphous-In-Ga-Zn-O thin-film transistors. J. Soc. Inf. Disp. 2010, 18, 789–795. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yang, B.S.; Oh, S.; Han, S.J.; Lee, H.W.; Heo, J.; Jeong, J.K.; Kim, H.J. Photobias Instability of High Performance Solution Processed Amorphous Zinc Tin Oxide Transistors. ACS Appl. Mater. Interfaces 2013, 5, 3255–3261. [Google Scholar] [CrossRef]
- Noh, H.-K.; Chang, K.J.; Ryu, B.; Lee, W.-J. Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors. Phys. Rev. B 2011, 84, 115205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Jeon, S.-H.; Hwang, Y.-J.; Lee, S.-H.; Jang, J.; Kang, I.M.; Kim, D.-K.; Bae, J.-H. Physico-Chemical Origins of Electrical Characteristics and Instabilities in Solution-Processed ZnSnO Thin-Film Transistors. Coatings 2022, 12, 1534. https://doi.org/10.3390/coatings12101534
Wang Z, Jeon S-H, Hwang Y-J, Lee S-H, Jang J, Kang IM, Kim D-K, Bae J-H. Physico-Chemical Origins of Electrical Characteristics and Instabilities in Solution-Processed ZnSnO Thin-Film Transistors. Coatings. 2022; 12(10):1534. https://doi.org/10.3390/coatings12101534
Chicago/Turabian StyleWang, Ziyuan, Sang-Hwa Jeon, Yu-Jin Hwang, Sin-Hyung Lee, Jaewon Jang, In Man Kang, Do-Kyung Kim, and Jin-Hyuk Bae. 2022. "Physico-Chemical Origins of Electrical Characteristics and Instabilities in Solution-Processed ZnSnO Thin-Film Transistors" Coatings 12, no. 10: 1534. https://doi.org/10.3390/coatings12101534
APA StyleWang, Z., Jeon, S. -H., Hwang, Y. -J., Lee, S. -H., Jang, J., Kang, I. M., Kim, D. -K., & Bae, J. -H. (2022). Physico-Chemical Origins of Electrical Characteristics and Instabilities in Solution-Processed ZnSnO Thin-Film Transistors. Coatings, 12(10), 1534. https://doi.org/10.3390/coatings12101534