Crosslinked PVA/Nanoclay Hydrogel Coating for Improving Water Vapor Barrier of Cellulose-Based Packaging at High Temperature and Humidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoclay Exfoliation
2.3. Coating Formulations Preparation
2.4. Coating Process
2.5. Nanoclay and Coated Paper Characterization
2.6. Barrier Properties of Coated Paper
3. Results and Discussion
3.1. Water Vapor Barrier of Coated Paper
3.2. Effect of Layered Nanoclay Addition and Crosslinking on Water Vapor Barrier
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonio, R.; Alessandro, S.; Criselda, S.; Piera, C.; Notarstefano, V.; Oliana, C.; Fabrizio, P.; Mauro, C.; Federico, B.; Simonetta, D.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar]
- Heather, A.; Martin, J.; Sicco, H.; Dick, V.; Juan, J.; Marja, H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar]
- Lauren, C.; Jeanette, M.; Robert, T.; Michael, C.; Vasileios, T.; Laura, R. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar]
- Lebreton, L.; Joost, V.; Damsteeg, J.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [Green Version]
- Silvana, A.; Barbara, M.; Guendalina, Z. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res. Int. 2020, 137, 109664. [Google Scholar]
- Mazela, B.; Tomkowiak, K.; Jones, D. Strength and moisture-related properties of filter paper coated with nanocellulose. Coatings 2022, 12, 1376. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, T.; He, M.; Yan, Y.; Xiao, H. Cellulose-assisted refining of bleached softwood kraft pulp for making water vapor barrier and grease-resistant paper. Cellulose 2016, 23, 891–900. [Google Scholar] [CrossRef]
- Aloui, H.; Khwaldia, K. Effects of coating weight and nanoclay content on functional and physical properties of bionanocomposite-coated paper. Cellulose 2017, 24, 4493–4507. [Google Scholar] [CrossRef]
- Shen, Z.; Rajabi-Abhari, A.; Oh, K.; Yang, G.; Youn, H.J.; Lee, H. Improving the barrier properties of packaging paper by polyvinyl alcohol-based polymer coating-effect of the base paper and nanoclay. Polymers 2021, 13, 1334. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gu, F.; Deng, Z.; Zhu, Y.; Zhu, J.; Guo, T.; Song, J.; Xiao, H. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydr. Polym. 2021, 255, 117431. [Google Scholar] [CrossRef] [PubMed]
- Gatto, M.; Ochi, D.; Yoshida, C.M.P.; da Silva, C.F. Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydr. Polym. 2019, 210, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Rhim, J.W.; Hong, S.I.; Ha, C.S. Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci. Technol. 2009, 42, 612–617. [Google Scholar] [CrossRef]
- Farmahini-Farahani, M.; Bedane, A.H.; Pan, Y.; Xiao, H.; Eic, M.; Chibante, F. Cellulose/nanoclay composite films with high water vapor resistance and mechanical strength. Cellulose 2015, 22, 3941–3953. [Google Scholar] [CrossRef]
- Wang, J.; Euring, M.; Ostendory, K.; Zhang, K. Biobased materials for food packaging. J. Bioresour. Bioprod. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Zhang, M.; Ma, M.; Wang, C.; Li, J. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Appl. Surf. Sci. 2013, 280, 686–692. [Google Scholar] [CrossRef]
- Alemayehu, H.B.; Mladen, E.; Farmahini-Farahani, M.; Xiao, H. Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J. Membr. Sci. 2015, 493, 46–57. [Google Scholar]
- Sehaqui, H.; Kochumalayil, J.; Liu, A.; Zimmermann, T.; Berglund, L. Multifunctional nanoclay hybrids of high toughness, thermal, and barrier performances. ACS Appl. Mater. Interfaces 2013, 5, 7613–7620. [Google Scholar] [CrossRef]
- Chou, C.; Shi, S.; Chen, C. Sandwich-structured, hydrophobic, nanocellulose-reinforced polyvinyl alcohol as an alternative straw material. Polymers 2021, 13, 4447–4461. [Google Scholar] [CrossRef]
- Spoljaric, S.; Salminen, A.; Luong, N.; Lahtinen, P.; Vartiainen, J.; Tammelin, T.; Seppala, J. Nanofibrillated cellulose, poly (vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties. Polym. Compos. 2013, 35, 1117–1131. [Google Scholar] [CrossRef]
- Song, Z.; Xiao, H.; Zhao, Y. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr. Polym. 2014, 111, 442–448. [Google Scholar] [CrossRef]
- Herrera, M.A.; Mathew, A.P.; Oksman, K. Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 2017, 24, 3969–3980. [Google Scholar] [CrossRef] [Green Version]
- Sebastien, R. Dispersion of layered silicates in composites of poly (vinyl alcohol) and micro fibrillated cellulose for water vapor barrier improvement. In Proceedings of the International Conference on Nanotechnology for Renewable Materials, Grenoble, France, 14–16 June 2016. [Google Scholar]
- Guo, T.; Gu, L.; Zhang, Y.; Chen, H.; Jin, Y.; Xiao, H. Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. J. Mater. Chem. A 2019, 7, 14033–14041. [Google Scholar] [CrossRef]
- Kaya, S.; Maskan, A. Water vapor permeability of pestil (a fruit leather) made from boiled grape juice with starch. J. Food Eng. 2003, 57, 295–299. [Google Scholar] [CrossRef]
- Ho, T.; Zimmermann, T.; Ohr, S.; Caseri, W. Composites of cationic nanofibrillated cellulose and layered silicates: Water vapor barrier and mechanical properties. ACS Appl. Mater. Interfaces 2012, 4, 4832–4840. [Google Scholar] [CrossRef]
Exposed Condition | Raw Paper | Coating Layer | |||
---|---|---|---|---|---|
PVA | PVA Gel | PVA/NC | PVA/NC Gel | ||
23 °C, 50% RH | 512 (26) | 21 (6) | 6 (3) | 5 (2) | 2 (1) |
38 °C, 90% RH | 1861 (53) | 789 (59) | 510 (48) | 443 (39) | 195 (29) |
Coating Layer | Kit No. (15 s) | Cobb No. (120 s), g/m2 | IWCA, ° |
---|---|---|---|
PVA | 12 | 14 ± 2 | 101 ± 9 |
PVA gel | 12 | 13 ± 2 | 109 ± 6 |
PVA/NC | 12 | 12 ± 2 | 105 ± 8 |
PVA/NC gel | 12 | 10 ± 2 | 108 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, F.; Yang, W.; Song, J.; Xiao, H.; Wang, W.; Cai, Z. Crosslinked PVA/Nanoclay Hydrogel Coating for Improving Water Vapor Barrier of Cellulose-Based Packaging at High Temperature and Humidity. Coatings 2022, 12, 1562. https://doi.org/10.3390/coatings12101562
Gu F, Yang W, Song J, Xiao H, Wang W, Cai Z. Crosslinked PVA/Nanoclay Hydrogel Coating for Improving Water Vapor Barrier of Cellulose-Based Packaging at High Temperature and Humidity. Coatings. 2022; 12(10):1562. https://doi.org/10.3390/coatings12101562
Chicago/Turabian StyleGu, Feng, Wenjing Yang, Junlong Song, Huining Xiao, Wangxia Wang, and Zhaosheng Cai. 2022. "Crosslinked PVA/Nanoclay Hydrogel Coating for Improving Water Vapor Barrier of Cellulose-Based Packaging at High Temperature and Humidity" Coatings 12, no. 10: 1562. https://doi.org/10.3390/coatings12101562
APA StyleGu, F., Yang, W., Song, J., Xiao, H., Wang, W., & Cai, Z. (2022). Crosslinked PVA/Nanoclay Hydrogel Coating for Improving Water Vapor Barrier of Cellulose-Based Packaging at High Temperature and Humidity. Coatings, 12(10), 1562. https://doi.org/10.3390/coatings12101562