Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Taste Masking of Chewing Gums—Conventional Methods
2.1. Sweeteners and Seasoners
2.2. Ion Exchange Resins
2.3. Inclusion Complexation
2.4. Effervescent Agents
3. Potential of Microencapsulation in Chewing Gum-Types, Aspects and Prospects of Flavor Microencapsulation
4. Taste Modification by Ingredient Encapsulation- Merits and Applications in Chewing Gums
4.1. Bioactive Encapsulation
4.2. Sweetener Encapsulation
4.3. Flavor Microencapsulation
4.3.1. Controlled-Release or Modified Release
4.3.2. Multiple Flavors
4.3.3. Upfront or Blunt Flavor Release
4.3.4. Sustained or Continual Flavor Release
4.4. Salts and Acids
4.5. Prophylactic Agents
5. Flavor Microencapsulation in Chewing Gums—Patent Review
6. Recent Technology Platforms for Flavor Microencapsulation
6.1. Flavor8®
6.2. Spray Dried Flavoring®
6.3. Matrix Encapsulation®
6.4. Coreshell®
6.5. Powder Stabilisation®
7. Challenges and Future Perspectives—Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lachman, L.; Liberman, H.A. The Theory and Practice of Industrial Pharmacy; CBS Publishers: Delhi, India, 2013; Volume 449, pp. 242–246. [Google Scholar]
- Kaushik, D.; Dureja, H. Recent patents and patented technology platforms for pharmaceutical taste masking. Recent Pat. Drug Deliv. Formul. 2014, 8, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Douroumis, D. Orally disintegrating dosage forms and taste-masking technologies. Expert Opin. Drug. Deliv. 2011, 8, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Kinnamon, S.C. A plethora of taste receptors. Neuron 2000, 25, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, P.; Kaushik, D. Medicated chewing gums: Recent patents and patented technology platforms. Recent Pat. Drug. Deliv. Formul. 2019, 13, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Sadeq, Z.A.; Mohammed, M.F.; Fakree, N.K. Medicated chewing gum: A Review. Int. J. Drug. Deliv. Techn. 2022, 12, 428–431. [Google Scholar]
- Banakar, M.; Moayedi, S.; Shamsoddin, E.; Vahedi, Z.; Banakar, M.H.; Mousavi, S.M.; Rokaya, D.; Lankarani, B.K. Chewing gums as a drug delivery approach for oral health. Int. J. Dent. 2022, 2022, 9430988. [Google Scholar] [CrossRef]
- Kale, V.; Tapre, C. A gustatory system and masking the taste of Bitter Herbs. Int. J. Pharm. Sci. Res. 2013, 4, 4118–4124. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, D.; Singh, M. Taste masking Technologies: A novel approach for the improvement of organoleptic property of pharmaceutical active substance. Inter. Res. J. Pharm. 2012, 3, 108–118. [Google Scholar]
- Guo, Y.; Singh, P.A. Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharmaceuticals. J. Drug. Deliv. Sci. Technol. 2019, 52, 440–451. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, S.; Jeong, S.H.; Park, K. Orally fast disintegrating tablets: Developments, technologies, taste-masking and clinical studies. Crit. Rev. Ther. Drug Carrier. Syst. 2004, 21, 433–476. [Google Scholar] [CrossRef] [Green Version]
- Sohi, H.; Sultana, Y.; Khar, R.K. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug. Dev. Ind. Pharm. 2004, 30, 429–448. [Google Scholar] [CrossRef] [Green Version]
- Foster, B.M.; Yang, H.; Cosgrove, T.; Hasan, E.A. Medicated Chewing Gum. EU2124599, 4 September 2008. [Google Scholar]
- Shinde, M.R.; Winnier, J. Comparative evaluation of Stevia and Xylitol chewing gum on salivary streptococcus mutans count – A pilot study. J Clin Exp Dent. 2020, 12, e568-73. [Google Scholar] [CrossRef]
- Cho, W. Formulation of medicated chewing gum comprising anti-histamine. KR101736038, 16 May 2017. [Google Scholar]
- Shaikh, A.; Agrawal, A.; Jain, N.K.; Gupta, M.K. Formulation and evaluation of medicated chewing gum of dolasetron as an antiemetic agent. J. Drug. Deliv. Ther. 2017, 7, 125–128. [Google Scholar] [CrossRef]
- Al-Melh, M.M.A. Anesthetic chewing gum. US20190054020, 21 February 2019. [Google Scholar]
- Available online: https://www.dailymail.co.uk/health/article-421353/First-chewing-gumcontraceptive-pill-goes-sale-U-S.html (accessed on 6 January 2021).
- Parouha, P.; Koshta, A.; Jain, N.; Josh, I.A.; Malviya, S.; Kharia, A. Formulation and evaluation of disulfiram medicated chewing gum. Int. J. Pharm. Life Sci. 2020, 11, 6556–6564. [Google Scholar]
- Kathpalia, H.; Das, S. Applications of ion-exchange resin in oral drug delivery systems. Int. J. Drug Deliv. Technol. 2017, 7, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, M.A.; Darwish, M.K.; Fattah, A.E. Development of medicated chewing gum using natural gum base. Int. J. Pharmacogn. Phytochem. Res. 2019, 16, 395–402. [Google Scholar] [CrossRef]
- Muthukumar, S.; Nijanthan, S.; Vinesha, R.; Sundaraja, R.; Sridevi, M.; Salabha, A. Formulation and evaluation of medicated chewing gum consisting of dextromethorphan and guaifenesin for the treatment of cough. Res. J. Pharm. Technol. 2021, 14, 2445. [Google Scholar]
- Roy, G.M. Taste masking in oral pharmaceuticals. Pharm. Technol. 1994, 18, 84–99. [Google Scholar]
- Ogunbadejo, B.; Al-Zuhair, S. MOFs as potential matrices in cyclodextrin glycosyltransferase immobilization. Molecules 2021, 26, 680. [Google Scholar] [CrossRef]
- Przybyla, M.A.; Yilmaz, G.; Remzi, B.C. Natural cyclodextrins and their derivatives for polymer synthesis. Pol. Chem. 2020, 11, 7582–7602. [Google Scholar] [CrossRef]
- Andersan, C.; Lao, L.M.; Szeman, J.; Szente, L. Stable MCG comprising cyclodextrin inclusion complexes. US20130022652, 24 January 2013. [Google Scholar]
- Stojanov, M.; Larsen, K.L. Cetirizine release from cyclodextrin formulated compressed chewing gum. Drug. Dev. Ind. Pharm. 2012, 38, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Fating, H.K.; Ambadkar, J.V.; Kajale, A.D. Advances in taste masking of drug: A review study. J. Drug. Del. Ther. 2022, 12, 255–261. [Google Scholar] [CrossRef]
- Lombardy, C.M.; Lombardy, D.R. Effervescent Chewing Gum. US 6235318 B1, 3 May 2001. [Google Scholar]
- Niazi, S.; Shemesh, A. Chewing Gum Containing Medicaments and Taste Masking. US4639368A, 27 January 1987. [Google Scholar]
- Sander, C.; Nielsan, H.S.; Sogaard, S.R.; Stoving, C.; Yang, M.; Jacobsen, J.; Rantanen, J. Process development for spray drying of sticky pharmaceuticals; case study of bioadhesive nicotine microparticles for compressed medicated chewing gum. Int. J. Pharm. 2013, 452, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Tyrpin, H.T.; Russel, M.P.; Witkewitz, D.L.; Johnson, S.S.; Ream, R.L.; Coriveau, C.L. Caffeine Coated Chewing Gum Product and Process of Making. US 6444241 B1, 3 September 2002. [Google Scholar]
- Greenberg, M.; Urnezis, P.; Tian, M. Compressed mints and chewing gum containing magnolia bark extract are effective against bacteria responsible for oral malodor. J. Agric. Food Chem. 2007, 55, 9465–9469. [Google Scholar] [CrossRef]
- Chaudhary, S.A.; Shahiwala, A.F. Directly compressible medicated chewing gum formulation for quick relief from common cold. Int. J. Pharm. Investig. 2012, 2, 123. [Google Scholar] [CrossRef]
- Samiei, N.; Olyaei, E.; Saberi, S.; Zolfaghari, M.E. Development of a gum base formulation for nystatin; a new drug delivery approach for treatment of oral candidiasis. J. Drug. Deliv. Sci. Tech 2018, 21, 433–475. [Google Scholar] [CrossRef]
- Mostafavi, A.; Varshosaz, J.; Arabian, S. Formulation development and evaluation of metformin chewing gum with bitter taste masking. Adv Biomed Res. 2014, 3, 92. [Google Scholar] [CrossRef]
- Aslani, A.; Ghannadi, A.; Raddanipour, R. Design, formulation and evaluation of Aloe Vera chewing gum. Adv. Biomed. Res. 2015, 4, 175. [Google Scholar]
- Walt, V.S. Development and Evaluation of a Medicated Chewing Gum Containing Sceletium tortuosum. Master’s Dissertation, Potchefstroom Campus, North-West University, Potchefstroom, South Africa, 2016. [Google Scholar]
- Gonzalez, E.J. Chewing Gum Formula for Enhancing Psycho-Spirituality. US20110038915, 17 February 2012. [Google Scholar]
- Yashaswini, P.M.; Someshwara, B.; Ranjit, K.; Vinod, R.; Suresh, K.; Kumar, P. Formulation and evaluation of nicorandil chewing gum. RJPDFT 2010, 2, 301–306. [Google Scholar]
- Swamy, N.G.N.; Shilpa, P.; Abbas, Z. Formulation and characterization of medicated chewing gums of dextromethorphan hydrobromide. Indian Drugs 2012, 49, 29–35. [Google Scholar] [CrossRef]
- Garg, M.; Chhipa, K.; Kumar, L. Microencapsulation techniques in pharmaceutical formulation. Eur. J. Pharm. Med. Res. 2022, 5, 199–206. [Google Scholar]
- Gupta, K.; Khandre, R. An overview on microencapsulation technologies. Int. J. Res. Publ. Rev. 2022, 3, 3558–3573. [Google Scholar]
- Mehta, F.; Trivedi, P. Formulation and texture characterization of medicated chewing gum delivery of dimenhydrinate hydrochloride. Pharmacia. Lett. 2011, 2, 129–140. [Google Scholar]
- Mohammadi, N.; Ehsani, M.R.; Bakhoda, H. Design and evaluation of the release characteristics of caffeine-loaded microcapsules in a medicated chewing gum formulation. Food Biophys. 2018, 13, 240–249. [Google Scholar] [CrossRef]
- Meyers, M.A. Flavor release and application in chewing gum and confections. In Microencapsulation in the Food Industry; Academic Press: Cambridge, MA, USA, 2014; pp. 443–453. [Google Scholar]
- Meyers, M. Application of flavor encapsulation in chewing gum. Presented at the Bioactives World Forum 6th Industrial Workshop on Microencapsulation: Fundamentals & State of the Art—Processing and Application Technologies, Minneapolis, MN, USA, 27 September 2012. [Google Scholar]
- Sobel, R.; Gundlach, M.; Su, C.-P. Novel concepts and challenges of flavor microencapsulation and taste modification. In Microencapsulation in the Food Industry—A Practical Implementation Guide; Academic Press: Cambridge, MA, USA, 2014; pp. 421–442, Chapter 33. [Google Scholar]
- Rosa, D. Making Flavors Do Tricks; The Manufacturing Confectioner: Princeton, WI, USA, 2006; pp. 81–85. [Google Scholar]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Design and characterization of controlled release vitamin a microparticles prepared by a spray-drying process. Powder Technol. 2017, 305, 411–417. Available online: https://www.cheric.org/research/tech/periodicals/doi.php?art_seq=1523372 (accessed on 7 March 2021). [CrossRef]
- Bylaitë, E.; Rimantas, V.P.; Maþdþierienë, R. Properties of caraway (Carum carvi L.) essential oil encapsulated into milk protein-based matrices. Eur. Food Res. Technol. 2001, 212, 661–670. [Google Scholar] [CrossRef]
- Baranauskiene, R.; Bylaitė, E.; Žukauskaitė, J.; Venskutonis, R.P. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. J. Agric. Food Chem. 2007, 55, 3027–3036. [Google Scholar] [CrossRef]
- Available online: https://static1.buchi.com/sites/default/files/AN_248_2017flavor_and_fragrance.pdf (accessed on 6 March 2021).
- Furuta, T. Microencapsulation of flavors and oil by cyclodextrin. Supramol. Chem. 2008, 1, 9–16. [Google Scholar]
- Furuta, T.; Yoshii, H.; Miyamoto, A.; Yasunishi, A.; Hirano, H. Effect of water and alcohols on the formation of inclusion complexes of d-limonene and cyclodextrin. Supramol. Chem. 1993, 1, 321–325. [Google Scholar] [CrossRef]
- Chranioti, C.; Nikoloudaki, A.; Tzia, C. Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydr. Polym. 2015, 127, 252–263. [Google Scholar] [CrossRef]
- Caccioti, I.; Garavand, F.; Rostamabadi, H.; Khorshidian, N.; Sarlak, Z.; Jafari, S.M. Application of Nano/Microencapsulated Ingredients in Chewing Gum; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Boghani, N.; Gebreselassie, P.; Hargreaves, C.A. Taste Potentiator Compositions and Edible Confectionery and Chewing Gum Products Containing Same. WO127934A2, 1 February 2011. [Google Scholar]
- Casas, R.; Estruch, R.; Sacanella, E. Influence of bioactive nutrients on the atherosclerotic process: A review. Nutrients 2018, 10, 1630. [Google Scholar] [CrossRef] [PubMed]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 954–994. [Google Scholar] [CrossRef] [PubMed]
- Palabiyik, I.; Toker, O.S.; Konar, N.; Gunes, R.; Güleri, T.; Alaşalvar, H.; Çam, M. Phenolics release kinetics in sugared and sugar-free chewing gums: Microencapsulated pomegranate peel extract usage. Int. J. Food Sci. Technol. 2018, 53, 2657–2663. [Google Scholar] [CrossRef]
- Potineni, R.V.; Peterson, D.G. Mechanisms of flavor release in chewing gum: Cinnamaldehyde. J. Agric. Food Chem. 2008, 56, 3260–3267. [Google Scholar] [CrossRef] [PubMed]
- Favaro-Trindade, C.S.; Rocha-Selmi, G.A.; dos Santos, M.G. Microencapsulation of sweeteners. In Microencapsulation and Microspheres for Food Applications; Academic Press: Cambridge, MA, USA, 2015; pp. 333–349. [Google Scholar]
- Pegg, R.B.; Shahidi, F. Encapsulation, Stabilization, and Controlled Release of Food Ingredients and Bioactives. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007; pp. 527–586. [Google Scholar]
- Rocha-Selmi, G.A.; Bozza, F.T.; Thomazini, M.; Bolini, H.M.; Fávaro-Trindade, C.S. Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chem. 2013, 139, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.G.; Carpinteiro, D.A.; Thomazini, M.; Rocha-Selmi, G.A.; da Cruz, A.G.; Rodrigues, C.E.; Favaro-Trindade, C.S. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food. Res. Int. 2014, 66, 454–462. [Google Scholar] [CrossRef]
- Kumar, R.; Solanki, P.; Chandra, A. Medicated chewing gum- a novel drug delivery system: An updated review. Am. J. Adv. Drug Deliv. 2014, 2014, 434–450. [Google Scholar] [CrossRef]
- Hinderink, E.B.; Avison, S.; Boom, R.; Bodnár, I. Dynamic flavor release from chewing gum: Mechanisms of release. Food Res. Int. 2019, 116, 717–723. [Google Scholar] [CrossRef]
- Yoshii, H.; Sakane, A.; Kawamura, D.; Neoh, T.L.; Kajiwara, H.; Furuta, T. Release kinetics of (−)-menthol from chewing gum. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 591–596. [Google Scholar] [CrossRef]
- Cherukuri, S.R.; Chau, T.L.; Raman, K.P.; Orama, A.M. Multiple Encapsulated Flavor Delivery System and Method of Preparation. EP0453397, 18 January 1995. [Google Scholar]
- Sris, A.S.; Suria, K.P.; Muthuprasanna, P.; Pavitra, P. Microencapsulation: A review. Int. J. Pharm. Bio. Sci. 2012, 3, 509–521. [Google Scholar]
- Available online: https://scienceandfooducla.wordpress.com/2015/07/07/flavor-changing-chewing-gum/#:~:text=To%20get%20any%20sort%20of,micrometers%20in%20size%20%5B1%5D (accessed on 26 December 2020).
- Shen, R.W. Taste Masking of Ibuprofen by Fluid Bed Coating. US5552152, 3 September 1996. [Google Scholar]
- Cherukuri, S.R.; Raman, K.P.; Mansukhani, G. Microencapsulated flavoring agents and methods for preparing same. US5266335A, 30 November 1993. [Google Scholar]
- De Roos, K.B. Physicochemical Models of Flavor Release from Foods; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2000; pp. 126–141. [Google Scholar]
- Carroll, T.J.; Feinerman, D.; Huzinec, R.J.; Piccolo, D.J. Gum Composition with Plural Time Releasing Flavors and Method of Preparation. US4485118, 27 November 1984. [Google Scholar]
- Lenzi, S.; Kar, S.; Michaelidou, T.A.; Harvey, J.E.; Beam, M.A.; McCormick, D.T. Chewing Gum Compositions Providing Flavor Release Profiles. US13821296, 22 August 2013. [Google Scholar]
- Castro, A.J.; Johnson, S.S. Long-Duration Encapsulated Flavors and Chewing Gum Using Same. EP2003983, 23 January 2013. [Google Scholar]
- Kitasako, Y.; Tanaka, M.; Sadr, A.; Hamba, H.; Ikeda, M.; Tagami, J. Effects of a chewing gum containing phosphoryl oligosaccharides of calcium (POs-Ca) and fluoride on remineralization and crystallization of enamel subsurface lesions in situ. J. Dent. 2011, 39, 771–779. [Google Scholar] [CrossRef]
- Abbasi, S.; Rahimi, S.; Azizi, M. Influence of microwave-microencapsulated citric acid on some sensory properties of chewing gum. J. Microencapsul. 2009, 26, 90–96. [Google Scholar] [CrossRef]
- Barry, J.E.; Trogolo, J.A. Antimicrobial Chewing Gum. US6365130, 22 August 2002. [Google Scholar]
- Barabolak, R.; Hoerman, K.; Kroll, B.; Record, D. Gum chewing profiles in the US population. Community Dent. Oral Epidemiol. 1991, 19, 125–126. [Google Scholar] [CrossRef]
- Faraj, J.A.; Dorati, R.; Schoubben, A.; Worthen, D.; Selmin, F.; Capan, Y.; DeLuca, P.P. Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. Pharm. Sci. Technol. 2007, 8, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, G.; Zhang, X. Release kinetics of catechins from chewing gum. J. Pharm. Sci. 2004, 93, 293–299. [Google Scholar] [CrossRef]
- Charve, J.; Reineccius, G.A. Encapsulation performance of proteins and traditional materials for spray dried flavors. J. Agric. Food Chem. 2009, 57, 2486–2492. [Google Scholar] [CrossRef]
- Zuidam, N.; Heinrich, E. Encapsulation of aroma. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Zuidam, N.J., Nedovic, V., Eds.; Springer: New York, NY, USA, 2010; pp. 127–160. [Google Scholar]
- Song, J.H.; Christafor, E.S.; David, W.R.; Donald, J.T.; Kevin, B.B.; Philip, G.S. Long Flavor Duration Releasing Structures for Chewing Gum and Method of Making. US6428827, 6 August 2002. [Google Scholar]
- Mansukhani, G.; Cherukuri, S.R. Chewing Gum Compositions Having Prolonged Breath-Freshening. US 4724151, 9 February 1988. [Google Scholar]
- Witteveen, F.; Givaudan, S.A. Encapsulation. US1123445, 28 April 1988. [Google Scholar]
- Sobel, R.M.; Bunchean, B.; Su, C.P.; Gundlach, M.; Ackerman, T.E.; Peter, G.R. Flavor encapsulation using electrostatic atomization. US 11235303, 1 February 2022. [Google Scholar]
- Available online: https://www.carinsa.com/en/chewing-gum (accessed on 1 July 2021).
- Kristina, T.; Gregory, K.; Jill, N.; Gerard, M.; Katarina, L. Chewing gum comprising nicotine. WO2020012009A1, 16 January 2020. [Google Scholar]
- Nagaich, U.; Chaudhar, V.; Karki, R.; Yadav, A.; Sharma, P. Formulation of medicated chewing gum of ondansetron hydrochloride and its pharmacokinetic evaluations. Int. J. Pharm. Sci. Res. 2010, 32–40. [Google Scholar]
- Available online: https://www.tastetech.com/about/innovation/ (accessed on 1 June 2021).
- Available online: https://www.tastetech.com/what-we-do/flavour8-flavourings/ (accessed on 10 April 2021).
- Available online: https://www.ingredients-insight.com/features/featurepush-the-boundaries-the-encapsulation-process-5686434/ (accessed on 6 February 2021).
- Available online: https://www.tastetech.com/what-we-do/spray-drying/ (accessed on 18 January 2020).
- Available online: http://www.foodbusinessafrica.com/2018/10/19/tastetech-launches-new-gum-kit-to-help-manufacturers-create-longer-lasting-chewing-gum (accessed on 6 January 2021).
- Available online: https://www.globenewswire.com/news-release/2019/02/26/1742524/0/ (accessed on 12 January 2021).
- Available online: http:/AXIM-Biotechnologies-Announces-SuccessfulMicroencapsulation-ofCannabinoids-Into-Proprietary-Chewing-Gum-Delivery-Mechanism-forClinical-Trials.html (accessed on 2 January 2020).
- Available online: https://www.tastetech.com/what-we-do/matrix-encapsulation/ (accessed on 6 March 2021).
- Available online: https://www.tastetech.com/what-we-do/coreshell-encapsulation/ (accessed on 15 January 2021).
- Available online: https://www.tastetech.com/what-we-do/powder-stabilisation/ (accessed on 16 January 2020).
- Singh, G.; Gautam, N.; Nagendra, B.; Mittal, S.; Jaitak, V. Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms. Polymer Reviews 2016, 56, 668–701. [Google Scholar]
- Billore, S.; Khambete, H.; Jain, S. Design and development of medicated chewing gum for management of depression. Int. J. Pharm. Sci. Res. 2021, 12, 4025–4030. [Google Scholar]
- Konar, N.; Palabiyik, I.; Toker, O.S.; Sagdic, O. Chewing gum: Production, quality parameters and opportunities for delivering bioactive compounds. Trends. Food. Sci. Technol. 2016, 55, 29–38. [Google Scholar] [CrossRef]
- Simões, L.D.S.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, L.Ó. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid. Interf. Sci. 2017, 243, 23–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols – A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- Bousquet, P.J.; Guillot, B.; Guilhou, J.; Raison, P.N. A Stomatitis due to artificial cinnamon-flavored chewing gum. Arch. Dermatol. 2005, 141, 1466–1467. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
Drug | Taste-Masking Techniques | Excipients | References |
---|---|---|---|
Levocetirizine dihydrochloride | Cyclodextrin-complexation and ion exchange resins | Kleptose, Captisol, Kyron T-314, Kyron T-154 | [21] |
Nicotine | Spray-dried microparticles using bioadhesive polymer | Nicotine bitartarate, Hypromellose, alginate, mannitol | [31] |
Caffeine | Co-encapsulation of caffeine with sweeteners and coating with water-insoluble or water-soluble polymers | Zein, shellac, HPMC, gelatin, Gum Arabic, Corn syrup, dextrose, thaumatin, alitame | [32] |
Magnolia bark | Use of flavors | Peppermint oil | [33] |
Cetirizine | Inclusion- complexes with sweeteners & flavors | β-cyclodextrin, aspartame, menthol, peppermint flavor, and vanilla flavor. | [34] |
Oral hygiene gum | Effervescent agents | The core contains bicarbonate and the coating contains encapsulated edible acid (citric acid) | [29] |
Phenylpropanolamine HCl | Effervescent agents, taste bud desensitizing agents, sweeteners, and flavors | Benzocaine, spilanthol, corn syrup, mannitol, spearmint flavor, sodium bicarbonate, tartaric acid NutraSweet | [30] |
Nystatin | Solid dispersion | PEG 4000, liquid sorbitol, xylitol, aspartame, oily flavors | [35] |
Metformin | Drug mixed with sweeteners mixture followed by spray drying or freeze-drying (Microencapsulation) | Glycerin, aspartame, sodium saccharin, potassium -acesulfame, spearmint essence | [36] |
Aloe vera | Sweeteners & flavors | Aspartame, maltitol, xylitol, eucalyptus, peppermint, banana | [37] |
Scletium tortuosum | Sweeteners & flavors | Xylitol, mannitol, sorbitol, cherry flavor | [38] |
Salvia divinorum | Alkaline buffer, sweetening agent, encapsulating buffer | - | [39] |
Nicorandil | Sweeteners & flavors | Sucralose, aerosil, sorbitol, vanillin | [40] |
Dextromethorphan HBr | Spray-dried microparticles (Microencapsulation) | Dextromethorphan, sucralose, aerosil dispersed in ethanol | [41] |
Encapsulated Ingredients | Examples | Excipients Used | Encapsulation Techniques | Reference |
---|---|---|---|---|
Bioactives | Catechins | Polyvinyl acetate (PVAc) | Hot melt fluid bed coating and dispersion | [84] |
Pomegranate peels | Maltodextrin | Spray drying | [61] | |
Sweeteners | Aspartame | Polyvinyl alcohol | Freeze drying | [64] |
Aspartame | Gum Arabic and Gelatin | Double emulsions followed by complex coacervation | [65] | |
Flavors | Xylitol and Menthol | Gum Arabic | Combination of complex coacervation and double-emulsion technique | [66] |
Salts & acids | Calcium and fluoride | Oligosaccharides | Spray drying | [79] |
Decapeptide | Hydroxyapatite | Inclusion- complexation | [83] |
Patent No. | Title | Method Used |
---|---|---|
US7022352 | Encapsulated flavors and chewing gum using the same | Improved flavor retention using flavor encapsulation by spray drying using various polymers, such as gum Arabic or maltodextrins etc. |
US6428827 | Long flavor duration releasing structures for chewing gum and method of making | Modified flavor release interval in chewing gum comprising a hydroxypropyl cellulose matrix cross-linked with a multi-factorial carboxylate |
US7851000B2 | Taste-potentiator compositions and edible confectionery and chewing gum products containing the same | Taste enhancers modify the taste perception of active ingredients contained in the formulation |
US0064783A1 | Flavor impregnation of nicotine chewing gum core | Impregnating the chewing gum core by adding one dose of liquid flavor mixture |
US5266335A | Microencapsulated flavoring agents and methods for preparing the same | Microencapsulated flavoring agents prepared by complex-coacervation |
US4485118A | Gum composition with plural time releasing flavors and method of preparation | Sequentially releasable multiple flavor systems. One of the savors is encapsulated within a hydrophobic coating and another one is available for immediate release |
US4724151A | Chewing gum compositions having prolonged breath-freshening | Improved mouth-freshening effects by utilizing a lipophilic gum base, a sweetening agent, and a blend of spray-dried flavors |
WO 012009A1 | Chewing gum comprising nicotine | Multilayer chewing gum for sustained and extended release |
US1123445 | Microencapsulation | Encapsulated flavors for flavor retention and taste masking |
US0105485 | Flavor encapsulation using electrostatic atomization. | Electrostatic spray drying process for encapsulation of volatile flavor oil |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushik, P.; Verma, R.; Mittal, V.; Bhatia, S.; Pratap-Singh, A.; Kaushik, D. Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives. Coatings 2022, 12, 1656. https://doi.org/10.3390/coatings12111656
Kaushik P, Verma R, Mittal V, Bhatia S, Pratap-Singh A, Kaushik D. Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives. Coatings. 2022; 12(11):1656. https://doi.org/10.3390/coatings12111656
Chicago/Turabian StyleKaushik, Prerna, Ravinder Verma, Vineet Mittal, Saurabh Bhatia, Anubhav Pratap-Singh, and Deepak Kaushik. 2022. "Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives" Coatings 12, no. 11: 1656. https://doi.org/10.3390/coatings12111656
APA StyleKaushik, P., Verma, R., Mittal, V., Bhatia, S., Pratap-Singh, A., & Kaushik, D. (2022). Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives. Coatings, 12(11), 1656. https://doi.org/10.3390/coatings12111656