Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. IZO Thin Films Synthesis
2.2. IZO Film Characterization
3. Results and Discussion
- In order to achieve the minimal values of resistivity in the IZO films, it was necessary to carry out sputtering at a substrate temperature not exceeding 100 °C;
- At this substrate temperature, the mobility could be increased from 25 to more than 37 cm2/V·s by adding up to 0.4% O2 to the working gas Ar. At the same time, despite the concomitant slight decrease in the carrier concentration from 6.7 × 1020 to 2.7 × 1020 cm−3, the deposited films were characterized by resistivity values ρ ≤ 6 × 10−4 Ω·cm (which corresponds to a sheet resistance RS less than 15 Ω/sq at the films’ thickness of 400 nm), meeting conventional TCO requirements;
- When using substrate temperatures and oxygen concentrations above optimal values (100 °C and 0.4%O2, respectively), a noticeable downgrade of electrical performance in IZO is observed due to a decrease in both the concentration and mobility.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.; Joo, S.H.; Shin, S.G.; Choi, H.W.; Bark, C.W.; Rim, Y.S.; Kim, K.H.; Kim, S. Effect of Annealing in ITO Film Prepared at Various Argon-and-Oxygen-Mixture Ratios via Facing-Target Sputtering for Transparent Electrode of Perovskite Solar Cells. Coatings 2022, 12, 203. [Google Scholar] [CrossRef]
- Chen, P.-H.; Chen, W.-J.; Tseng, J.-Y. Thermal Stability of the Copper and the AZO Layer on Textured Silicon. Coatings 2021, 11, 1546. [Google Scholar] [CrossRef]
- Kawajiri, K.; Tahara, K.; Uemiya, S. Lifecycle assessment of critical material substitution: Indium tin oxide and aluminum zinc oxide in transparent electrodes. Resour. Environ. Sustain. 2022, 7, 100047. [Google Scholar] [CrossRef]
- Liang, S.; Zhou, Q.; Li, X.; Zhong, M.; Wang, H. Electrical and Optical Properties of a Transparent Conductive ITO/Ga2O3 /Ag/Ga2O3 Multilayer for Ultraviolet Light-Emitting Diodes. Nanomaterials 2019, 9, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.H.; Ren, W.; Lee, H.J.; Kim, N.; Son, K.R.; Rani, A.; Kim, T.G. Efficient TADF-based blue OLEDs with 100% stretchability using titanium particle-embedded indium zinc oxide mesh electrodes. NPG Asia Mater. 2022, 14, 66. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Wu, H.; Yang, J.; Wang, Y.; Zhang, J.; Bao, Q.; Wang, M.; Ma, Z.; Tress, W.; et al. A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices. Nat. Commun. 2022, 13, 4387. [Google Scholar] [CrossRef]
- Kumar, N.; Arora, K.; Kumar, M. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. J. Phys. D Appl. Phys. 2019, 52, 335103. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Lu, T.-L.; Hong, M.-H.; Ho, J.-J.; Chou, C.-C.; Ho, J.; Hsieh, T.-P. Evaluation of Transparent ITO/Nano-Ag/ITO Electrode Grown on Flexible Electrochromic Devices by Roll-to-Roll Sputtering Technology. Coatings 2022, 12, 455. [Google Scholar] [CrossRef]
- Wang, J.; Zou, X.; Zhu, J.; Cheng, J.; Chen, D.; Bai, X.; Yao, Y.; Chang, C.; Yu, X.; Liu, B.; et al. Effect of Optimization of TiO2 Electron Transport Layer on Performance of Perovskite Solar Cells with Rough FTO Substrates. Materials 2020, 13, 2272. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Kim, K.-H.; Ahn, H.-J. Net-Patterned Fluorine-Doped Tin Oxide to Accelerate the Electrochromic and Photocatalytic Interface Reactions. Catalysts 2021, 11, 249. [Google Scholar] [CrossRef]
- Hou, W.; Liao, Q.; Xie, S.; Song, Y.; Qin, L. Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings 2022, 12, 558. [Google Scholar] [CrossRef]
- Park, S.-R.; Suh, M.C. Enhanced device performances of a new inverted top-emitting OLEDs with relatively thick Ag electrode. Opt. Express 2018, 26, 4979–4988. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, G.; Grasso, V.; Barquinha, P.; Pereira, L.; Elamurugu, E.; Brignone, M.; Martins, R.; Lambertini, V.; Fortunato, E. Role of Room Temperature Sputtered High Conductive and High Transparent Indium Zinc Oxide Film Contacts on the Performance of Orange, Green, and Blue Organic Light Emitting Diodes. Plasma Process. Polym. 2011, 8, 340–345. [Google Scholar] [CrossRef]
- Bush, K.A.; Bailie, C.D.; Chen, Y.; Bowring, A.R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M.D. Thermal and Environmental Stability of Semi-Transparent Perovskite Solar Cells for Tandems Enabled by a Solution-Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Adv. Mater. 2016, 28, 3937–3943. [Google Scholar] [CrossRef] [PubMed]
- Jošt, M.; Bertram, T.; Koushik, D.; Marquez, J.A.; Verheijen, M.A.; Heinemann, M.D.; Köhnen, E.; Al-Ashouri, A.; Braunger, S.; Lang, F.; et al. 21.6%-Efficient Monolithic Perovskite/Cu (In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Lett. 2019, 4, 583–590. [Google Scholar] [CrossRef]
- Schultes, M.; Helder, T.; Ahlswede, E.; Aygüler, M.F.; Jackson, P.; Paetel, S.; Schwenzer, J.A.; Hossain, I.M.; Paetzold, U.W.; Powalla, M. Sputtered Transparent Electrodes (IO:H and IZO) with Low Parasitic Near-Infrared Absorption for Perovskite−Cu (In,Ga)Se2 Tandem Solar Cells. ACS Appl. Energy Mater. 2019, 2, 7823–7831. [Google Scholar] [CrossRef]
- Rim, Y.S.; Kim, H.J.; Kim, K.H. Characteristics of indium zinc oxide films deposited using the facing targets sputtering method for OLEDs applications. Thin Solid Film. 2010, 518, 6223–6227. [Google Scholar] [CrossRef]
- Calnan, S.; Tiwari, A.N. High mobility transparent conducting oxides for thin film solar cells. Thin Solid Film. 2010, 518, 1839–1849. [Google Scholar] [CrossRef]
- Morales-Masis, M.; De Nicolas, S.M.; Holovsky, J.; De Wolf, S.; Ballif, C. Low-Temperature High-Mobility Amorphous IZO for Silicon Heterojunction Solar Cells. IEEE J. Photovolt. 2015, 5, 1340–1347. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N.; Stanculescu, A.; Breazu, C.; Florica, C.; Rasoga, O.; Stanculescu, F.; Socol, G. IZO deposited by PLD on flexible substrate for organic heterostructures. Appl. Phys. A 2017, 123, 371. [Google Scholar] [CrossRef]
- Lee, W.-J.; Cho, D.-H.; Kim, Y.D.; Choi, M.-W.; Choi, J.C.; Chung, Y.-D. Thermally evaporated amorphous InZnO thin film applicable to transparent conducting oxide for solar cells. J. Alloys Compd. 2019, 806, 976–982. [Google Scholar] [CrossRef]
- Lee, S.; Kang, Y.-H.; Kim, M.-S.; Lee, H.; Cho, Y.-H.; Kim, M.; Yoon, T.-S.; Kim, H.-M.; Kim, K.-B. Effect of the Bilayer Period of Atomic Layer Deposition on the Growth Behavior and Electrical Properties of the Amorphous In−Zn−O Film. ACS Appl. Mater. Interfaces 2020, 12, 39372–39380. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, F.; Cai, X.; Ma, T.; Jiang, C. Indium Zinc Oxide Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. J. Phys. Chem. C 2018, 122, 28491–28496. [Google Scholar] [CrossRef]
- Kukla, R. Magnetron sputtering on large scale substrates: An overview on the state of the art. Surf. Coat. Technol. 1997, 93, 1–6. [Google Scholar] [CrossRef]
- Minami, T.; Yamamoto, T.; Toda, Y.; Miyata, T. Transparent conducting zinc-co-doped ITO films prepared by magnetron sputtering. Thin Solid Film. 2000, 373, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.C.; Shin, H.J.; Han, D.C.; Ahn, K.-S.; Kim, J.H.; Lee, D.K. Transparent Zn-Doped In2O3 Electrode Prepared by Radio Frequency Facing Target Sputtering for Flexible Dye-Sensitized Solar Cells. Mol. Cryst. Liq. Cryst. 2011, 538, 127–135. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, S.; Xu, Y.; Yang, S. Preparation of a-IZO thin films by RF magnetron sputtering for Cu (In, Ga) Se2 solar cells. J. Phys. Conf. Ser. 2020, 1549, 042036. [Google Scholar] [CrossRef]
- Kim, D.-G.; Lee, S.; Kim, D.-H.; Lee, G.-H.; Isshiki, M. Temperature dependence of the microstructure and resistivity of indium zinc oxide films deposited by direct current magnetron reactive sputtering. Thin Solid Film. 2008, 516, 2045–2049. [Google Scholar] [CrossRef]
- Li, Y.L.; Lee, D.Y.; Min, S.R.; Cho, H.N.; Kim, J.; Chung, C.W. Effect of Oxygen Concentration on Properties of Indium Zinc Oxide Thin Films for Flexible Dye-Sensitized Solar Cell. Jpn. J. Appl. Phys. 2008, 47, 6896. [Google Scholar] [CrossRef]
- Ishida, T.; Nishimura, T.; Chantana, J.; Mavlonov, A.; Kawano, Y.; Negami, T.; Minemoto, T. Tunable-Conduction-Band In–Zn–O-Based Transparent Conductive Oxide Deposited at Room Temperature. Phys. Status Solidi A 2022, 219, 2200061. [Google Scholar] [CrossRef]
- Akhmedov, A.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. A Multi-Position Drum-Type Assembly for Simultaneous Film Deposition at Different Temperatures in a Single Sputter Cycle–Application to ITO Thin Films. Coatings 2020, 10, 1076. [Google Scholar] [CrossRef]
- Asvarov, A.S.; Abduev, A.K.; Akhmedov, A.K.; Kanevsky, V.M. On the Effect of the Co-Introduction of Al and Ga Impurities on the Electrical Performance of Transparent Conductive ZnO-Based Thin Films. Materials 2022, 15, 5862. [Google Scholar] [CrossRef] [PubMed]
- Asvarov, A.S.; Muslimov, A.E.; Akhmedov, A.K.; Abduev, A.K.; Kanevsky, V.M. A Laboratory Apparatus for Spark Plasma Sintering of Ceramic and Composite Materials. Instrum. Exp. Tech. 2019, 62, 726–730. [Google Scholar] [CrossRef]
- Birgin, E.G.; Chambouleyron, I.; Martınez, J.M. Estimation of the Optical Constants and the Thickness of Thin Films Using Unconstrained Optimization. J. Comput. Phys. 1999, 151, 862–880. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, A.; Abduev, A.; Murliev, E.; Asvarov, A.; Muslimov, A.; Kanevsky, V. The ZnO-In2O3 Oxide System as a Material for Low-Temperature Deposition of Transparent Electrodes. Materials 2021, 14, 6859. [Google Scholar] [CrossRef]
- Park, D.H.; Son, K.Y.; Lee, J.H.; Kim, J.J.; Lee, J.S. Effect of ZnO addition in In2O3 ceramics: Defect chemistry and sintering behavior. Solid State Ion. 2004, 172, 431–434. [Google Scholar] [CrossRef]
- Hosono, H. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 2006, 352, 851–858. [Google Scholar] [CrossRef]
- Martins, R.; Almeida, P.; Barquinha, P.; Pereira, L.; Pimentel, A.; Ferreira, I.; Fortunato, E. Electron transport and optical characteristics in amorphous indium zinc oxide films. J. Non-Cryst. Solids 2006, 352, 1471–1474. [Google Scholar] [CrossRef]
- Li, G.F.; Zhou, J.; Huang, Y.W.; Yang, M.; Feng, J.H.; Zhang, Q. Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature. Vacuum 2010, 85, 22–25. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hirano, M.; Hosono, H. Electronic structure of oxygen deficient amorphous oxide semiconductor a-InGaZnO4–x: Optical analyses and first-principle calculations. Phys. Status Solidi C 2008, 5, 3098–3100. [Google Scholar] [CrossRef]
- Leenheer, A.J.; Perkins, J.D.; van Hest, M.F.A.M.; Berry, J.J.; O’Hayre, R.P.; Ginley, D.S. General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films. Phys. Rev. B 2008, 7, 115215. [Google Scholar] [CrossRef]
- Korner, W.; Urban, D.F.; Elsasser, C. Origin of subgap states in amorphous In-Ga-Zn-O. J. Appl. Phys. 2013, 114, 163704. [Google Scholar] [CrossRef]
- Korner, W.; Urban, D.F.; Elsasser, C. Generic origin of subgap states in transparent amorphous semiconductor oxides illustrated for the cases of In–Zn–O and In–Sn–O. Phys. Status Solidi A 2015, 212, 1476–1481. [Google Scholar] [CrossRef]
- Ramanauskas, R.; Iljinas, A.; Marcinauskas, L.; Milieška, M.; Kavaliauskas, Ž.; Gecevičius, G.; Čapas, V. Deposition and Application of Indium-Tin-Oxide Films for Defrosting Windscreens. Coatings 2022, 12, 670. [Google Scholar] [CrossRef]
- Txintxurreta, J.; G-Berasategui, E.; Ortiz, R.; Hernández, O.; Mendizábal, L.; Barriga, J. Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings 2021, 11, 92. [Google Scholar] [CrossRef]
- Mazur, M.; Obstarczyk, A.; Posadowski, W.; Domaradzki, J.; Kiełczawa, S.; Wiatrowski, A.; Wojcieszak, D.; Kalisz, M.; Grobelny, M.; Szmidt, J. Investigation of the Microstructure, Optical, Electrical and Nanomechanical Properties of ZnOx Thin Films Deposited by Magnetron Sputtering. Materials 2022, 15, 6551. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-M.; Bae, K.; Sohn, S. Electronic and Optical Properties of Indium Zinc Oxide Thin Films Prepared by Using Nanopowder Target. Jpn. J. Appl. Phys. 2011, 50, 045801. [Google Scholar] [CrossRef]
- Craciun, V.; Martin, C.; Socol, G.; Tanner, D.; Swart, H.C.; Becherescu, N.; Craciuna, D. Optical properties of amorphous indium zinc oxide thin films synthesized by pulsed laser deposition. Appl. Surf. Sci. 2014, 306, 52–55. [Google Scholar] [CrossRef]
- Taylor, M.P.; Readey, D.W.; Teplin, C.W.; van Hest, M.F.A.M.; Alleman, J.L.; Dabney, M.S.; Gedvilas, L.M.; Keyes, B.M.; To, B.; Perkins, J.D. The electrical, optical and structural properties of InxZn1−xOy (0 ≤ x ≤ 1) thin films by combinatorial techniques. Meas. Sci. Technol. 2005, 16, 90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmedov, A.K.; Murliev, E.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties. Coatings 2022, 12, 1583. https://doi.org/10.3390/coatings12101583
Akhmedov AK, Murliev EK, Asvarov AS, Muslimov AE, Kanevsky VM. Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties. Coatings. 2022; 12(10):1583. https://doi.org/10.3390/coatings12101583
Chicago/Turabian StyleAkhmedov, Akhmed K., Eldar K. Murliev, Abil S. Asvarov, Arsen E. Muslimov, and Vladimir M. Kanevsky. 2022. "Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties" Coatings 12, no. 10: 1583. https://doi.org/10.3390/coatings12101583
APA StyleAkhmedov, A. K., Murliev, E. K., Asvarov, A. S., Muslimov, A. E., & Kanevsky, V. M. (2022). Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties. Coatings, 12(10), 1583. https://doi.org/10.3390/coatings12101583