Correlation between Thickness and Optical Properties in Nanocrystalline γ-Monoclinic WO3 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Substrates and WO3 Thin Films
2.2. Characterization of WO3 Thin Films
3. Results
3.1. X-ray Diffraction
3.2. Scanning Electron Microscope (SEM)
3.3. Atomic Force Microscope (AFM)
3.4. Infrared Spectroscopy (FT-IR)
3.5. Raman Spectroscopy
3.6. UV–Vis Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullapalli, S.K.; Vemuri, R.S.; Manciu, F.S.; Enriquez, J.L.; Ramana, C.V. Tungsten oxide (WO3) thin films for application in advanced energy systems. J. Vac. Sci. Technol. A Vac. Surf. Film. 2010, 28, 824–828. [Google Scholar] [CrossRef]
- Matharu, R.K.; Ciric, L.; Ren, G.; Edirisinghe, M. Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogens. Nanomaterials 2020, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Sang, D.; Zou, L.; Wang, Q.; Liu, C. A Review on the Properties and Applications of WO3 Nanostructure−Based Optical and Electronic Devices. Nanomaterials 2021, 11, 2136. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.Y.; Kubota, T.; Tajima, K. Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications. RSC Adv. 2021, 11, 28614–28620. [Google Scholar] [CrossRef]
- Mouratis, K.; Tudose, I.V.; Romanitan, C.; Pachiu, C.; Popescu, M.; Simistiras, G.; Couris, S.; Suchea, M.P.; Koudoumas, E. WO3 Films Grown by Spray Pyrolysis for Smart Windows Applications. Coatings 2022, 12, 545. [Google Scholar] [CrossRef]
- Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. J. Hazard. Mater. 2022, 428, 128218. [Google Scholar] [CrossRef]
- Jayatissa, A.H.; Dadi, A.; Aoki, T. Nanocrystalline WO3 films prepared by two-step annealing. Appl. Surf. Sci. 2005, 244, 453–457. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Imamura, S.; Ito, S.; Nishio, K.; Fujimoto, K. Influence of oxygen gas concentration on hydrogen sensing of Pt/WO3 thin film prepared by sol–gel process. Sens. Actuators B Chem. 2015, 216, 394–401. [Google Scholar] [CrossRef]
- Kalhori, H.; Amir, S.B.P.; Esmaeily, S.; Coey, M.; Ranjbar, M.; Salamati, H.; Porter, S.B. Morphology and Structural Studies of WO3 Films Deposited on SrTiO3 by Pulsed Laser Deposition. Appl. Surf. Sci. 2016, 390, 43–49. [Google Scholar] [CrossRef]
- Thompson, C.V. Structure evolution during processing of Polycrystalline Films. Annu. Rev. Mater. Sci. 2000, 30, 159–190. [Google Scholar] [CrossRef]
- Ohring, M. Materials Science of Thin Films, 2nd ed.; Publisher Academic Press: Cambridge, MA, USA, 2002; ISBN 978-0-12-524975-1. [Google Scholar]
- Chen, Z.W.; Jiao, Z.; Wu, M.H.; Shek, C.H.; Wu, C.M.L.; Lai, J.K.L. Microstructural evolution of oxides and semiconductor thin films. Prog. Mater. Sci. 2011, 56, 901–1029. [Google Scholar] [CrossRef]
- Vemuri, R.S.; Engelhard, M.H.; Ramana, C.V. Correlation between Surface Chemistry, Density, and Band Gap in Nanocrystalline WO3 Thin Films. ACS Appl. Mater. Interfaces 2012, 4, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Thilagavathi, T.; Venugopal, D.; Marnadu, R.; Chandrasekaran, J.; Alshahrani, T.; Shkir, M. An Investigation on Microstructural, Morphological, Optical, Photoluminescence and Photocatalytic Activity of WO3 for Photocatalysis Applications: An Effect of Annealing. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1217–1230. [Google Scholar] [CrossRef]
- Ramana, C.V.; Utsunomiya, S.; Ewing, R.C.; Julien, C.M.; Becker, U. Structural Stability and Phase Transitions in WO3 Thin Films. J. Phys. Chem. B 2006, 110, 10430–10435. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, A.; Murrieta, G. Estudio de primeros principios de la estructura cristalina y electrónica del WO3. Superf. Vacío 2010, 23, 119–122. [Google Scholar]
- Chacón, C.; Rodríguez-Pérez, M.; Oskam, G.; Rodríguez-Gattorno, G. Synthesis and characterization of WO3 polymorphs: Monoclinic, orthorhombic and hexagonal structures. J. Mater. Sci. Mater. Electron. 2015, 26, 5526–5531. [Google Scholar] [CrossRef]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured Tungsten Oxide—Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Woodward, P.M.; Sleight, A.W.; Vogt, T. Ferroelectric Tungsten Trioxide. J. Solid State Chem. 1997, 131, 9. [Google Scholar] [CrossRef]
- Aird, A.; Domeneghetti, M.C.; Mazzi, F.; Tazzoli, V.; Salje, E.K.H. Sheet superconductivity in WO3-x: Crystal structure of the tetragonal matrix. J. Phys. Condens. Matter 1998, 10, L569. [Google Scholar] [CrossRef]
- Christopher, J.H.; Vittorio, L.; Kevin, S.K. High-temperature phase transitions in tungsten trioxide—The last word? J. Phys. Condens. Matter 2002, 14, 377. [Google Scholar] [CrossRef]
- Pereiro, X.L.J.; Strle, J.; Bollinger, A.T.; Bozovic, I. Epitaxial growth of high quality WO3 thin films. APL Mater. 2015, 3, 096102. [Google Scholar] [CrossRef]
- Lassner, E.; Schubert, W.-D. Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds; Springer: New York, NY, USA, 1999. [Google Scholar]
- Loopstra, B.O.; Boldrini, P. Neutron Diffraction Investigation of WO3. Acta Crystallogr. 1966, 21, 158–162. [Google Scholar] [CrossRef]
- Huang, Z.F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327. [Google Scholar] [CrossRef]
- Song, J.; Huang, Z.-F.; Pan, L.; Zou, J.-J.; Zhang, X.; Wang, L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 2015, 5, 6594–6599. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Yoo, I.-H.; Cho, I.-S.; Seo, H. Effect of oxygen vacancies on the band edge properties of WO3 producing enhanced photocurrents. Electrochim. Acta 2018, 296, 517–527. [Google Scholar] [CrossRef]
- Liu, Z.; Yamazaki, T.; Shen, Y.; Kikuta, T.; Nakatani, N. Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films. Sens. Actuators B Chem. 2007, 128, 173–178. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Match!—Phase Analysis Using Powder Diffraction; Version 3; Crystal Impact: Bonn, Germany, 2022; Available online: https://www.crystalimpact.de/match (accessed on 14 October 2022).
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baró, A.M. WSxM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [Green Version]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Oudrhiri-Hassani, F.; Presmanes, L.; Barnabé, A.; Tailhades, P. Microstructure, porosity and roughness of RF sputtered oxide thin films: Characterization and modelization. Appl. Surf. Sci. 2008, 254, 5796–5802. [Google Scholar] [CrossRef] [Green Version]
- Al Mohammad, A.; Gillet, M. Phase transformations in WO3 thin films during Annealing. Thin Solid Films 2002, 408, 302–309. [Google Scholar] [CrossRef]
- Kwong, W.L.; Koshy, P.; Hart, J.N.; Xu, W.; Sorrell, C.C. Critical role of {002} preferred orientation on electronic band structure of electrodeposited monoclinic WO3 thin films. Sustain. Energy Fuels 2018, 2, 2224–2236. [Google Scholar] [CrossRef]
- Simchi, H.; McCandless, B.E.; Meng, T.; Shafarman, W.N. Structural, optical, and surface properties of WO3 thin films for solar cells. J. Alloys Compd. 2014, 617, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Lethy, K.; Beena, D.; Kumar, R.V.; Pillai, V.M.; Ganesan, V.; Sathe, V.; Phase, D. Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Appl. Phys. A 2008, 91, 637–649. [Google Scholar] [CrossRef]
- Durante, O.; Di Giorgio, C.; Granata, V.; Neilson, J.; Fittipaldi, R.; Vecchione, A.; Carapella, G.; Chiadini, F.; DeSalvo, R.; Dinelli, F.; et al. Emergence and Evolution of Crystallization in TiO2 Thin Films: A Structural and Morphological Study. Nanomaterials 2021, 11, 1409. [Google Scholar] [CrossRef] [PubMed]
- Ostwald, W.Z. Blocking of Ostwald ripening allowing long-term stabilization. Phys. Chem. 1901, 37, 385. [Google Scholar]
- Jain, S.; Sanger, A.; Chauhan, S.; Chandra, R. Hydrogen sensing properties of nanostructured Pd/WO3 thin films: Role of hydrophobicity during recovery process. Mater. Res. Express 2014, 1, 035046. [Google Scholar] [CrossRef]
- Manciu, F.S.; Enriquez, J.L.; Durrer, W.G.; Yun, Y.; Ramana, C.V.; Gullapalli, S.K. Spectroscopic analysis of tungsten oxide thin films. J. Mater. Res. 2010, 25, 2401–2406. [Google Scholar] [CrossRef]
- SGupta, P.; Nishad, H.H.; Chakane, S.D.; Gosavi, S.W.; Late, D.J.; Walke, P.S. Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on energy storage. Nanoscale Adv. 2020, 2, 4689–4701. [Google Scholar] [CrossRef]
- Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580–1586. [Google Scholar] [CrossRef]
- Hassani, H.; Partoens, B.; Bousquet, E.; Ghosez, P. First-principles study of lattice dynamical properties of the room-temperature P21/n and ground-state P21/c phases of WO3. Phys. Rev. B 2022, 105, 014107. [Google Scholar] [CrossRef]
- Garcia-Sanchez, R.F.; Ahmido, T.; Casimir, D.; Baliga, S.; Misra, P. Thermal Effects Associated with the Raman Spectroscopy of WO3 Gas-Sensor Materials. J. Phys. Chem. A 2013, 117, 13825–13831. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mena, J.E.; Díaz-Reyes, J.; Balderas-Lopez, J.A. Structural properties of WO3 dependent of the annealing temperature deposited by hot-filament metal oxide deposition. Rev. Mex. Fís. 2012, 58, 504–509. [Google Scholar]
- de Wijs, G.A.; de Groot, R.A. Amorphous WO3: A first-principles approach. Electrochim. Acta 2001, 46, 1989–1993. [Google Scholar] [CrossRef]
- Rougier, A.; Portemer, F.; Quédé, A.; El Marssi, M. Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Appl. Surf. Sci. 1999, 153, 1–9. [Google Scholar] [CrossRef]
- Regragui, M.; Addou, M.; Outzourhit, A.; Bernéde, J.C.; el Idrissi, E.; Benseddik, E.; Kachouane, A. Preparation and characterization of pyrolytic spray deposited electrochromic tungsten trioxide films. Thin Solid Films 2000, 358, 40–45. [Google Scholar] [CrossRef]
- Huo, N.; Yang, S.; Wei, Z.; Li, J. Synthesis of WO3 nanostructures and their ultraviolet photoresponse property. J. Mater. Chem. C 2013, 1, 3999–4007. [Google Scholar] [CrossRef]
- Boruah, P.J.; Khanikar, R.R.; Bailung, H. Synthesis and Characterization of Oxygen Vacancy Induced Narrow Bandgap Tungsten Oxide (WO3−x) Nanoparticles by Plasma Discharge in Liquid and Its Photocatalytic Activity. Plasma Chem. Plasma Process. 2020, 40, 1019–1036. [Google Scholar] [CrossRef]
- Kumar, K.U.; Murali, D.S.; Subrahmanyam, A. Flexible electrochromics: Magnetron sputtered tungsten oxide (WO3−x) thin films on Lexan (optically transparent polycarbonate) substrates. J. Phys. D Appl. Phys. 2015, 48, 255101. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Garie, R. Infrared and Raman spectroscopies of rf sputtered tungsten oxide films. J. Solid State Chem. 1988, 73, 127–139. [Google Scholar] [CrossRef]
- Tagtstrom, P.; Jansson, U. Chemical vapour deposition of epitaxial WO3 films. Thin Solid Films 1999, 352, 107–113. [Google Scholar] [CrossRef]
- Salje, E. Lattice dynamics of WO3. Acta Crystallogr. A 1975, 31, 360–363. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlarz, M. Infrared and Raman Study of W03 Tungsten Trioxides and W03, xHzO Tungsten Trioxide Hydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Baldissera, G.; Persson, C.; Niklasson, G.A.; Granqvist, C.G.; da Silva, A.F. Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 2010, 96, 061909. [Google Scholar] [CrossRef]
- Pirker, L.; Visic, B. Recent Progress in the Synthesis and Potential Applications of Two-Dimensional Tungsten (Sub)oxides. Isr. J. Chem. 2022, 62, e202100074. [Google Scholar] [CrossRef]
- Cen, J.; Wu, Q.; Yan, D.; Zhang, W.; Zhao, Y.; Tong, X.; Liu, M.; Orlov, A. New aspects of improving the performance of WO3 thin films for photoelectrochemical water splitting by tuning the ultrathin depletion region. RSC Adv. 2019, 9, 899. [Google Scholar] [CrossRef] [Green Version]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Castro-Hurtado, I.; Tavera, T.; Yurrita, P.; Pérez, N.; Rodriguez, A.; Mandayo, G.G.; Castaño, E. Structural and optical properties of WO3 sputtered thin films nanostructured by laser interference lithography. Appl. Surf. Sci. 2013, 276, 229–235. [Google Scholar] [CrossRef]
- Kato, K.; Shirai, T. Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light. J. Alloys Compd. 2022, 901, 163434. [Google Scholar] [CrossRef]
- Chatten, R.; Chadwick, A.V.; Rougier, A.; Lindan, P.J.D. The Oxygen Vacancy in Crystal Phases of WO3. J. Phys. Chem. B 2005, 109, 3146–3156. [Google Scholar] [CrossRef]
- Porkodi, P.; Yegnaraman, V.; Jeyakumar, D. Polyol mediated synthesis of tungsten trioxide and Ti doped tungsten trioxide Part 1: Synthesis and characterisation of the precursor material. Mater. Bull. Res. 2006, 51, 1476–1486. [Google Scholar] [CrossRef]
- Mohamedkhair, A.K.; Drmosh, Q.A.; Qamar, M.; Yamani, Z.H. Tuning Structural Properties of WO3 Thin Films for Photoelectrocatalytic Water Oxidation. Catalysts 2021, 11, 381. [Google Scholar] [CrossRef]
- Asanithi, P.; Chaiyakun, S.; Limsuwan, P. Growth of Silver Nanoparticles by DC Magnetron Sputtering. J. Nanomater. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vidyarthi, V.S.; Hofmann, M.; Savan, A.; Sliozberg, K.; König, D.; Beranek, R.; Schuhmann, W.; Ludwig, A. Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering. Int. J. Hydrogen Energy 2011, 36, 4724–4731. [Google Scholar] [CrossRef]
- Panepinto, A.; Snyders, R. Recent Advances in the Development of Nano-Sculpted Films by Magnetron Sputtering for Energy-Related Applications. Nanomaterials 2020, 10, 2039. [Google Scholar] [CrossRef] [PubMed]
- Yousif, A.; Khudadad, I. Effects of Annealing Process on the WO3 Thin Films Prepared by Pulsed Laser Deposition. Mater. Sci. Eng. 2020, 745, 012064. [Google Scholar] [CrossRef]
- Zheng, X.D. The influence of ion implantation-induced oxygen vacancy on electrical conductivity of WO3 thin films. Vacuum 2019, 165, 46–50. [Google Scholar] [CrossRef]
Reference [55] (cm−1) | Film 1 (cm−1) | Film 2 (cm−1) | Film 3 (cm−1) |
---|---|---|---|
807 | 802.3 | 803.4 | 804.6 |
715 | 713.6 | 709.4 | 708.8 |
273 | 266.7 | 271.7 | 266.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáenz-Hernández, R.J.; Herrera-Pérez, G.M.; Uribe-Chavira, J.S.; Grijalva-Castillo, M.C.; Elizalde-Galindo, J.T.; Matutes-Aquino, J.A. Correlation between Thickness and Optical Properties in Nanocrystalline γ-Monoclinic WO3 Thin Films. Coatings 2022, 12, 1727. https://doi.org/10.3390/coatings12111727
Sáenz-Hernández RJ, Herrera-Pérez GM, Uribe-Chavira JS, Grijalva-Castillo MC, Elizalde-Galindo JT, Matutes-Aquino JA. Correlation between Thickness and Optical Properties in Nanocrystalline γ-Monoclinic WO3 Thin Films. Coatings. 2022; 12(11):1727. https://doi.org/10.3390/coatings12111727
Chicago/Turabian StyleSáenz-Hernández, Renee J., Guillermo M. Herrera-Pérez, Jesús S. Uribe-Chavira, María C. Grijalva-Castillo, José Trinidad Elizalde-Galindo, and José A. Matutes-Aquino. 2022. "Correlation between Thickness and Optical Properties in Nanocrystalline γ-Monoclinic WO3 Thin Films" Coatings 12, no. 11: 1727. https://doi.org/10.3390/coatings12111727
APA StyleSáenz-Hernández, R. J., Herrera-Pérez, G. M., Uribe-Chavira, J. S., Grijalva-Castillo, M. C., Elizalde-Galindo, J. T., & Matutes-Aquino, J. A. (2022). Correlation between Thickness and Optical Properties in Nanocrystalline γ-Monoclinic WO3 Thin Films. Coatings, 12(11), 1727. https://doi.org/10.3390/coatings12111727