Effect of Gamma Radiation on Structural and Optical Properties of ZnO and Mg-Doped ZnO Films Paired with Monte Carlo Simulation
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Transport Range of Ions Matter (TRIM) Simulation
3. Results and Discussion
3.1. Structural Properties of ZnO and Mg-Doped ZnO
3.2. Optical Properties of ZnO and MgZnO
3.3. Morphological Properties of ZnO
3.4. Morphological Properties of MgZnO
3.5. TRIM-Monte Carlo Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karmakar, A.; Wang, J.; Prinzie, J.; De Smedt, V.; Leroux, P. A review of semiconductor based ionising radiation sensors used in Harsh radiation environments and their applications. Radiation 2021, 1, 194–217. [Google Scholar] [CrossRef]
- Liu, B.; Wang, P.-C.; Ao, Y.-Y.; Zhao, Y.; An, Y.; Chen, H.-B.; Huang, W. Effects of combined neutron and gamma irradiation upon silicone foam. Radiat. Phys. Chem. 2017, 133, 31–36. [Google Scholar] [CrossRef]
- Özgür, Ü.; Hofstetter, D.; Morkoc, H. ZnO devices and applications: A review of current status and future prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Pervez, M.; Mia, M.; Hossain, S.; Saha, S.; Ali, H.; Sarker, P.; Hossain, M.K.; Matin, M.; Hoq, M.; Chowdhury, M. Influence of total absorbed dose of gamma radiation on optical bandgap and structural properties of Mg-doped zinc oxide. Optik 2018, 162, 140–150. [Google Scholar] [CrossRef]
- Rasmidi, R.; Duinong, M.; Chee, F.P. Radiation Damage Effects on Zinc Oxide (ZnO) based Semiconductor Devices–A Review. Radiat. Phys. Chem. 2021, 184, 109455. [Google Scholar] [CrossRef]
- Mohamed, A.E.A.; Ayad, N.A.; Nabih, A.; Rashed, Z.; El-hageen, H.M. Speed response and performance degradation of high temperature gammairradiated silicon PIN photodiodes. Int. J. Comput. Sci. Telecommun. 2011, 2, 15–22. [Google Scholar]
- Mivolil, D.S.; Chee, F.P.; Rasmidi, R.; Alias, A.; Salleh, S.; Salleh, K.A.M. Gamma Ray and Neutron Radiation Effects on the Electrical and Structural Properties of n-ZnO/p-CuGaO2 Schottky Diode. ECS J. Solid State Sci. Technol. 2020, 9, 045019. [Google Scholar]
- Liu, Y.; Wu, W.J.; En, Y.F.; Wang, L.; Lei, Z.F.; Wang, X.H. Total dose ionizing radiation effects in the indium–zinc oxide thin-film transistors. IEEE Electron Device Lett. 2014, 35, 369–371. [Google Scholar] [CrossRef]
- Indluru, A.; Holbert, K.E.; Alford, T.L. Gamma radiation effects on indium-zinc oxide thin-film transistors. Thin Solid Film. 2013, 539, 342–344. [Google Scholar] [CrossRef]
- Kabacelik, I.; Kutaruk, H.; Yaltkaya, S.; Sahin, R. γ irradiation induced effects on the TCO thin films. Radiat. Phys. Chem. 2017, 134, 89–92. [Google Scholar] [CrossRef]
- Abu El-Fadl, A.; El-Maghraby, E.M.; Mohamad, G.A. Influence of gamma radiation on the absorption spectra and optical energy gap of Li-doped ZnO thin films. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2004, 39, 143–150. [Google Scholar] [CrossRef]
- Pandey, S.K.; Mukherjee, S. Bias-dependent photo-detection of dual-ion beam sputtered MgZnO thin films. Bull. Mater. Sci. 2016, 39, 307–313. [Google Scholar] [CrossRef]
- Ramirez, J.I.; Li, Y.V.; Basantani, H.; Jackson, T.N. Effects of gamma-ray irradiation and electrical stress on ZnO thin film transistors. In Proceedings of the 71st Device Research Conference, Notre Dame, IN, USA, 23–26 June 2013; Volume 95, pp. 171–172. [Google Scholar]
- Huang, K.; Tang, Z.; Zhang, L.; Yu, J.; Lv, J.; Liu, X.; Liu, F. Preparation and characterization of Mg-doped ZnO thin films by sol–gel method. Appl. Surf. Sci. 2012, 258, 3710–3713. [Google Scholar] [CrossRef]
- Mallika, A.N.; Reddy, A.R.; Babu, K.S.; Sujatha, C.; Reddy, K.V. Structural and photoluminescence properties of Mg substituted ZnO nanoparticles. Opt. Mater. 2014, 36, 879–884. [Google Scholar] [CrossRef]
- Poivey, C.; Day, J.H. Radiation hardness assurance for space systems. In Proceedings of the IEEE NSREC 2002, Phoenix, AZ, USA, 15–19 July 2002. [Google Scholar]
- Duinong, M.; Chee, F.P.; Salleh, S.; Alias, A.; Salleh, K.M.; Ibrahim, S. Structural and optical properties of gamma irradiated CuGaO2 thin film deposited by radio frequency (RF) sputtering. In Journal of Physics: Conference Series (Vol. 1358, No. 1, p. 012047); IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Sengupta, J.; Ahmed, A.; Labar, R. Structural and optical properties of post annealed Mg doped ZnO thin films deposited by the sol-gel method. Mater. Chem. Phys. 2013, 109, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Mulchandani, K.; Mavani, K.R. Crystallographically oriented porous ZnO nanostructures with visible-blind photoresponse: Controlling the growth and optical properties. Materialia 2019, 6, 100326. [Google Scholar] [CrossRef]
- Chee, F.P.; Duinong, M.; Rani, A.I.A.; Chang, J.H.W.; Alias, A.; Salleh, S. Simulation of displacement damage cross section of cuprous oxide/zinc oxide (Cu2O/ZnO) based heterojunction device. J. Eng. Sci. Technol. 2019, 14, 1820–1834. [Google Scholar]
- Benaicha, I.; Mhalla, J.; Raidou, A.; Qachaou, A.; Fahoume, M. Effect of Ni doping on optical, structural, and morphological properties of ZnO thin films synthesized by MSILAR: Experimental and DFT study. Materialia 2021, 15, 101015. [Google Scholar] [CrossRef]
- Gu, I.L.; Kuskovsky, M.Y.; Yin, M.; O’Brien, S.; Neumark, G.F. Quantum confinement in ZnO nanorods. Appl. Phys. Lett. 2004, 85, 3833–3835. [Google Scholar] [CrossRef] [Green Version]
- Raji, R.; Gopchandran, K.G. ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing. J. Sci. Adv. Mater. Devices 2017, 2, 51–58. [Google Scholar] [CrossRef]
- Al-Hamdani, N.A.; Al-Alawy, R.D.; Hassan, S.J. Effect of gamma irradiation on the structural and optical properties of ZnO thin films. IOSR J. Comput. Eng. 2014, 16, 11–16. [Google Scholar] [CrossRef]
- Brik, M.G.; Srivastava, A.M.; Popov, A.I. A few common misconceptions in the interpretation of experimental spectroscopic data. Opt. Mater. 2022, 127, 112276. [Google Scholar] [CrossRef]
- Nikolić, D.; Stankovic, K.; Timotijevic, L.; Rajović, Z.; Vujisić, M. Comparative study of gamma radiation effects on solar cells, photodiodes, and phototransistors. Int. J. Photoenergy 2013, 2013, 843174. [Google Scholar] [CrossRef]
- Baydogan, N.; Ozdemir, O.; Cimenoglu, H. The improvement in the electrical properties of nanospherical ZnO: Al thin film exposed to irradiation using a Co-60 radioisotope. Radiat. Phys. Chem. 2013, 89, 20–27. [Google Scholar] [CrossRef]
- Wang, X.; Saito, K.; Tanaka, T.; Nishio, M.; Nagaoka, T.; Arita, M.; Guo, Q. Energy band bowing parameter in MgZnO alloys. Appl. Phys. Lett. 2015, 107, 022111. [Google Scholar] [CrossRef]
- Reddy, K.T.R.; Prathap, P.; Revathi, N.; Reddy, A.S.N.; Miles, R.W. Mg-composition induced effects on the physical behavior of sprayed Zn1-xMgxO films. Thin Solid Films 2009, 518, 1275–1278. [Google Scholar] [CrossRef]
- Tugral, H.; Baydogan, N.; Cimenoglu, H. The characterization of optical properties of beta irradiated ZnO: Al thin film. J. Opt. 2015, 44, 233–239. [Google Scholar] [CrossRef]
Parameter | Unirradiated ZnO | 10 kGy | 50 kGy | 100 kGy | 200 kGy | 250 kGy | 300 kGy |
---|---|---|---|---|---|---|---|
Rq (nm) | 4.88 nm | 6.38 nm | 10.88 nm | 22.94 nm | 46.43 nm | 59.39 nm | 82.9 nm |
Ra (nm) | 3.78 nm | 4.78 nm | 8.32 nm | 18.65 nm | 38.75 nm | 47.51 nm | 78.46 nm |
Rmax (nm) | 47.0 nm | 57.4 nm | 65.3 nm | 87.12 nm | 101.74 nm | 121.89 nm | 133.52 nm |
Density (/µm2) | 32.457 | 23.715 | 15.322 | 11.0421 | 7.461 | 5.926 | 2.532 |
Parameter | Unirradiated ZnO | 10 kGy | 50 kGy | 100 kGy | 200 kGy | 250 kGy | 300 kGy |
---|---|---|---|---|---|---|---|
Rq (nm) | 4.78 nm | 7.12 nm | 13.73 nm | 18.82 nm | 22.64 nm | 32.15 nm | 45.22 nm |
Ra (nm) | 2.89 nm | 4.53 nm | 9.15 nm | 12.11 nm | 15.61 nm | 26.71 nm | 38.11 nm |
Rmax (nm) | 53.2 nm | 56.0 nm | 64.3 nm | 100.9 nm | 109.2 nm | 142.4 nm | 158.3 nm |
Density (/µm²) | 44.320 | 29.612 | 11.322 | 7.962 | 3.171 | 2.015 | 1.679 |
Incidence Energy (KeV) | Damage Events | Energy Absorbed (KeV/Ion) | ||||
---|---|---|---|---|---|---|
Total Vacancies | Replacement Collisions | Target displacement | Ionization KeV/Ion | Target damage KeV/Ion | ||
1250 | 2461 | 65 | 2526 | 864.6 | 24.46 | 871.06 |
1250 | 1758 | 68 | 2700 | 951.7 | 19.22 | 970.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duinong, M.; Rasmidi, R.; Chee, F.P.; Moh, P.Y.; Salleh, S.; Mohd Salleh, K.A.; Ibrahim, S. Effect of Gamma Radiation on Structural and Optical Properties of ZnO and Mg-Doped ZnO Films Paired with Monte Carlo Simulation. Coatings 2022, 12, 1590. https://doi.org/10.3390/coatings12101590
Duinong M, Rasmidi R, Chee FP, Moh PY, Salleh S, Mohd Salleh KA, Ibrahim S. Effect of Gamma Radiation on Structural and Optical Properties of ZnO and Mg-Doped ZnO Films Paired with Monte Carlo Simulation. Coatings. 2022; 12(10):1590. https://doi.org/10.3390/coatings12101590
Chicago/Turabian StyleDuinong, Mivolil, Rosfayanti Rasmidi, Fuei Pien Chee, Pak Yan Moh, Saafie Salleh, Khairul Anuar Mohd Salleh, and Sofian Ibrahim. 2022. "Effect of Gamma Radiation on Structural and Optical Properties of ZnO and Mg-Doped ZnO Films Paired with Monte Carlo Simulation" Coatings 12, no. 10: 1590. https://doi.org/10.3390/coatings12101590
APA StyleDuinong, M., Rasmidi, R., Chee, F. P., Moh, P. Y., Salleh, S., Mohd Salleh, K. A., & Ibrahim, S. (2022). Effect of Gamma Radiation on Structural and Optical Properties of ZnO and Mg-Doped ZnO Films Paired with Monte Carlo Simulation. Coatings, 12(10), 1590. https://doi.org/10.3390/coatings12101590