Individual Layer Thickness Dependence of Microstructure and Mechanical Properties of Magnetron Sputtering Mo-W-Doped Ni/Ni3Al Multilayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Microstructure
3.2. Mechanical Properties
4. Conclusions
- (1)
- All of the Ni/Ni3Al-MoW multilayers exhibited finer globular particles and lower roughness without micro-cracks and holes in the surface morphologies. The phase composition of the multilayer was identified as a γ-Ni-based solid solution phase dominantly, presenting the (111) texture;
- (2)
- With a lower h, the average grain size of the Ni/Ni3Al-MoW multilayers decreased, and the crystallinity degrees were degraded with the existence of the amorphous phase structure at a slight amount. In addition, nano-twins were provided with the (111) twining interfaces, mainly for the 40 nm Ni/Ni3Al-MoW multilayer. The reduction of the stacking fault energy (SFE) initiated by the co-doping of the Mo and W elements was deemed as promoting the formation of nano-twins. For the Ni/Ni3Al-MoW multilayer with h = 10 nm, the nucleation and growth of the nano-twins were limited without observations due to the actual h being less than the critical thickness required for providing the stacking of the nano-twins;
- (3)
- The hardness of the multilayer increased with a lower h, and the inhibitions of the dislocation movements due to both the grain refinements and layer interface barriers were responsible for the dominant strengthening mechanism. The elastic modulus of the multilayer decreased with h ≤ 40 nm for the existence of the amorphous phase, and the superior resistance against the fracture was achieved with a higher H/E ratio due to toughening via the lamellar structure for the 10 nm Ni/Ni3Al-MoW multilayer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manvi, M.; Swamy, K.B.M. Microelectronic materials, microfabrication processes, micromechanical structural configuration based stiffness evaluation in MEMS: A review. Microelectron. Eng. 2022, 263, 111854. [Google Scholar] [CrossRef]
- Choudhary, N.; Kaur, D. Shape memory alloy thin films and heterostructures for MEMS applications: A review. Sens. Actuators A 2016, 242, 162–181. [Google Scholar] [CrossRef]
- Krogstad, J.A.; Keimel, C.; Hemker, K.J. Emerging materials for microelectromechanical systems at elevated temperatures. J. Mater. Res. 2014, 29, 1597–1608. [Google Scholar] [CrossRef]
- Baumert, E.K.; Pierron, O.N. Fatigue degradation properties of LIGA Ni films using kilohertz microresonators. J. Microelectromech. Syst. 2012, 22, 16–25. [Google Scholar] [CrossRef]
- Yuan, S.S.; He, G.; Zhang, M.; Li, G.Z. On the temperature-related mechanical properties of UV-LIGA nickel material. Key Eng. Mater. 2015, 645, 926–930. [Google Scholar] [CrossRef]
- Yang, Y.; Imasogie, B.I.; Allameh, S.M.; Boyce, B.; Lian, K.; Lou, J.; Soboyejo, W.O. Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng. A 2007, 444, 39–50. [Google Scholar] [CrossRef]
- Cho, H.S.; Hemker, K.J.; Lian, K.; Goettert, J.; Dirras, G. Measured mechanical properties of LIGA Ni structures. Sens. Actuators A 2003, 103, 59–63. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, Y.; Zhou, Z.; Wei, L.I.; Hui, J.; Lei, W. Effect of heat treatment on tensile deformation behavior of Ni-Co film/Fe substrate systems. Trans. Nonferr. Metal. Soc. 2012, 22, 1613–1619. [Google Scholar] [CrossRef]
- Talin, A.A.; Marquis, E.A.; Goods, S.H.; Kelly, J.J.; Miller, M.K. Thermal stability of Ni-Mn electrodeposits. Acta Mater. 2006, 54, 1935–1947. [Google Scholar] [CrossRef]
- Laszczyńska, A.; Tylus, W.; Szczygieł, B.; Szczygieł, I. Influence of post-deposition heat treatment on the properties of electrodeposited Ni-Mo alloy coatings. Appl. Surf. Sci. 2018, 462, 432–443. [Google Scholar] [CrossRef]
- Vamsi, M.V.N.; Wasekar, N.P.; Sundararajan, G. Influence of heat treatment on microstructure and mechanical properties of pulse electrodeposited Ni-W alloy coatings. Surf. Coat. Technol. 2017, 319, 403–414. [Google Scholar] [CrossRef]
- Ong, C.Y.A.; Blackwood, D.J.; Li, Y. The effects of W content on solid-solution strengthening and the critical Hall-Petch grain size in Ni-W alloy. Surf. Coat. Technol. 2019, 357, 23–27. [Google Scholar] [CrossRef]
- Costa, J.M.; Costa, J.G.R.; Neto, A.F.A. Techniques of nickel(II) removal from electroplating industry wastewater: Overview and trends. J. Water Process. Eng. 2022, 46, 102593. [Google Scholar] [CrossRef]
- Esmaeili, A.R.; Mir, N.; Mohammadi, R. Influence of W content on microstructure and surface morphology of hard Ni-W films fabricated by magnetron co-sputtering. J. Vac. Sci. Technol. A 2021, 39, 033405. [Google Scholar] [CrossRef]
- Borgia, C.; Scharowsky, T.; Furrer, A.; Solenthaler, C.; Spolenak, R. A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 2011, 59, 386–399. [Google Scholar] [CrossRef]
- Kurz, S.J.B.; Ensslen, C.; Welzel, U.; Leineweber, A.; Mittemeijer, E.J. The thermal stability of Ni-Mo and Ni-W thin films: Solute segregation and planar faults. Scr. Mater. 2013, 69, 65–68. [Google Scholar] [CrossRef]
- Kurz, S.J.B.; Welzel, U.; Bischoff, E.; Mittemeijer, E.J. Diffraction stress analysis of highly planar-faulted, macroscopically elastically anisotropic thin films and application to tensilely loaded nanocrystalline Ni and Ni(W). J. Appl. Crystallogr. 2014, 47, 291–302. [Google Scholar] [CrossRef]
- Armstrong, D.E.J.; Haseeb, A.S.M.A.; Roberts, S.G.; Wilkinson, A.J.; Bade, K. Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni-W alloy films. Thin Solid Film. 2012, 520, 4369–4372. [Google Scholar] [CrossRef]
- Yin, D.; Marvel, C.J.; Cui, F.Y.; Vinci, R.P.; Harmer, M.P. Microstructure and fracture toughness of electrodeposited Ni-21 at.%W alloy thick films. Acta Mater. 2018, 143, 272–280. [Google Scholar] [CrossRef]
- Sim, S.D.; Krogstad, J.A.; Reddy, K.M.; Xie, K.Y.; Valentino, G.M.; Weihs, T.P.; Hemker, K.J. Nanotwinned metal MEMS films with unprecedented strength and stability. Sci. Adv. 2017, 3, e1700685. [Google Scholar] [CrossRef]
- Sim, S.D.; Krogstad, J.A.; Xie, K.Y.; Dasgupta, S.; Valentino, G.M.; Weihs, T.P.; Hemker, K.J. Tailoring the mechanical properties of sputter deposited nanotwinned nickel-molybdenum-tungsten films. Acta Mater. 2018, 144, 216–225. [Google Scholar] [CrossRef]
- Valentino, G.M.; Krogstad, J.A.; Weihs, T.P.; Hemker, K.J. Tailoring the coefficient of thermal expansion of ternary nickel alloys through compositional control and non-contact measurements. J. Alloys Compd. 2020, 833, 155024. [Google Scholar] [CrossRef]
- Kim, K.; Park, S.; Kim, T.; Park, Y.; Sim, G.D.; Lee, D. Mechanical, electrical properties and microstructures of combinatorial Ni-Mo-W alloy films. J. Alloys Compd. 2022, 919, 165808. [Google Scholar] [CrossRef]
- Navarro Yerga, R.M.; Pawelec, B.; Mota, N.; Huirache-Acuña, R. Hydrodesulfurization of Dibenzothiophene over Ni-Mo-W Sulfide Catalysts Supported on Sol-Gel Al2O3-CeO2. Materials 2022, 15, 6780. [Google Scholar] [CrossRef]
- Singh, R.; Kunzru, D.; Sivakumar, S. Enhanced catalytic activity of ultrasmall NiMoW trimetallic nanocatalyst for hydrodesulfurization of fuels. Fuel 2021, 288, 119603. [Google Scholar] [CrossRef]
- Tavizón-Pozos, J.A.; Suárez-Torello, V.A.; de los Reyes, J.A.; Guevara-Lara, A.; Pawelec, B.; Fierro, J.L.G.; Vrinat, M.; Geantet, C. Deep hydrodesulfurization of dibenzothiophene over NiW sulfide catalysts supported on sol-gel titania-alumina. Top. Catal. 2016, 59, 241–251. [Google Scholar] [CrossRef]
- Allam, M.; Benaicha, M.; Dakhouche, A. Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrogen Energy 2018, 43, 3394–3405. [Google Scholar] [CrossRef]
- Li, H.; Xie, M.; Zhang, G.; Fan, X.; Li, X.; Zhu, M.; Wang, L. Structure and tribological behavior of Pb-Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method. Appl. Surf. Sci. 2018, 435, 48–54. [Google Scholar] [CrossRef]
- Shang, K.; Zheng, S.; Ren, S.; Pu, J.; He, D.; Liu, S. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction. Appl. Surf. Sci. 2018, 437, 233–244. [Google Scholar] [CrossRef]
- Liu, Z.R.; Xu, Y.X.; Peng, B.; Wei, W.; Chen, L.; Wang, Q. Structure and property optimization of Ni-containing AlCrSiN coatings by nano-multilayer construction. J. Alloys Compd. 2019, 808, 151630. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, J.; Meng, J.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Ma, X.; Feng, R.; Liaw, P.K. Effects of modulation layer thickness on fracture toughness of a TiN/AlN-Ni multilayer film. Mater. Des. 2022, 222, 111097. [Google Scholar] [CrossRef]
- Mei, F.; Zhang, Z.; Yu, Y.; Lin, X.; Gao, J.; Yuan, T.; Lin, J. Microstructure, mechanical, tribological, and oxidizing properties of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings with different modulated thicknesses. Ceram. Int. 2022, 48, 32973–32985. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, P.; Meng, L.; Ruan, C.; Liang, Y.; Tu, J. Structure, mechanical properties and tribological behavior of sp2-C:Ti/sp3-C:Ti multilayer films deposited by magnetron sputtering. Diam. Relat. Mater. 2022, 125, 108963. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, K.; Li, Z.; Lu, F.; Huang, J.; Wu, Y.; Chu, P.K. Enhancement of high-temperature strength of Ni-based films by addition of nano-multilayers and incorporation of W. Acta Mater. 2017, 133, 55–67. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, B.; Xie, L. Improving mechanical properties of Ni-W based nanocrystalline films by multilayered architecture. Surf. Coat. Technol. 2020, 402, 126341. [Google Scholar] [CrossRef]
- Zhou, H.; Chang, L.; Fu, K.; Huang, H.; Niu, R.; Liao, X.; Sheppard, L.; George, L.; Martinu, L. Improvement of flow strength and scratch resistance of Ti/Cu nanocrystalline metal multilayer thin films by tailoring layer thickness and modulation ratio. Surf. Coat. Technol. 2020, 404, 126461. [Google Scholar] [CrossRef]
- Xue, J.; Li, Y.; Gao, L.; Qian, D.; Song, Z.; Wang, X.; Zhu, X.; Chen, J. Effects of periods on the evolution of microstructure and mechanical properties of multilayered Cu-W films during thermal annealing. Surf. Coat. Technol. 2020, 381, 125179. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Zhang, H.S.; Endrino, J.L.; Anders, A. Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver. Appl. Surf. Sci. 2008, 255, 2551–2556. [Google Scholar] [CrossRef]
- Wei, M.Z.; Huo, J.Z.; Wang, C.C.; Ma, Y.J.; Pan, H.Z.; Cao, Z.H.; Meng, X.K. Tuning length scale effect of hardness in Ag/Nb/Cu/Nb multilayers by Nb amorphous interlayer. Mater. Sci. Eng. A 2022, 835, 142651. [Google Scholar] [CrossRef]
- Messier, R.; Giri, A.P.; Roy, R.A. Revised structure zone model for thin film physical structure. J. Vac. Sci. Technol. A 1984, 2, 500–503. [Google Scholar] [CrossRef]
- Zong, J.; Feng, K.; Li, Z.; Qasim, A.M.; Chu, P.K. Studies on the surface morphology and hydrophobic property of NiTi thin films under in situ and post annealing various temperatures. Mater. Lett. 2016, 183, 244–247. [Google Scholar] [CrossRef]
- Tang, M.; Du, Y.; Zhou, P.; Wang, S.; Zhang, H.; Zeng, Y.; Liu, S.; Chai, X.; Peng, Y.; Wu, C.; et al. Experimental phase diagram, thermodynamic modeling and solidified microstructure in the Mo–Ni–W ternary system. Calphad 2020, 68, 101748. [Google Scholar] [CrossRef]
- Valentino, G.M.; Shetty, P.P.; Chauhan, A.; Krogstad, J.A.; Weihs, T.P.; Hemker, K.J. Nanotwin formation in Ni–Mo–W alloys deposited by dc magnetron sputtering. Scr. Mater. 2020, 186, 247–252. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Wu, X.L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012, 57, 1–62. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Q.; Sui, M.L.; Mao, S.X. Twinnability predication for fcc Metals. J. Mater. Sci. Technol. 2011, 27, 97–100. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, K.Y.; Wang, H.; Chen, J.; Zhang, X. Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 2013, 49, 152–163. [Google Scholar]
- Zhang, Z.; Shao, C.; Wang, S.; Luo, X.; Zheng, K.; Urbassek, H.M. Interaction of Dislocations and Interfaces in Crystalline Heterostructures: A Review of Atomistic Studies. Crystals 2019, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Callisti, M.; Polcar, T. Combined size and texture-dependent deformation and strengthening mechanisms in Zr/Nb nano-multilayers. Acta Mater. 2017, 124, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Zhang, X.; Wang, R.H.; Lei, S.Y.; Zhang, P.; Niu, J.J.; Liu, G.; Zhang, G.J.; Sun, J. Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 2011, 59, 7368–7379. [Google Scholar] [CrossRef]
- Rupert, T.J.; Trenkle, J.C.; Schuh, C.A. Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 2011, 59, 1619–1631. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, K.; Li, Z.; Lu, F.; Huang, J.; Wu, Y.; Chu, P.K. Enhancement of hardness and thermal stability of W-doped Ni3Al thin films at elevated temperature. Mater. Des. 2016, 111, 575–583. [Google Scholar] [CrossRef]
- Misra, A.; Hirth, J.P.; Hoagland, R.G. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 2005, 53, 4817–4824. [Google Scholar] [CrossRef]
- Anderson, P.M.; Foecke, T.; Hazzledine, P.M. Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 1999, 24, 27–33. [Google Scholar] [CrossRef]
- Zhou, Q.; Xie, J.Y.; Wang, F.; Huang, P.; Xu, K.W.; Lu, T.J. The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sin. 2015, 31, 319–337. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Liaw, P.K.; Zhang, Y. Exploring the amorphous phase formation and properties of W-Ta-(Cr, Fe, Ni) high-entropy alloy gradient films via a high-throughput technique. J. Alloys Compd. 2022, 913, 165294. [Google Scholar] [CrossRef]
- Li, R.N.; Song, H.Y.; An, M.R.; Xiao, M.X. Atomic-scale insight into mechanical properties and deformation behavior of crystalline/amorphous dual-phase high entropy alloys. Phys. Lett. A 2022, 446, 128272. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Matthews, A.; Jones, R.; Dowey, S. Modelling the Deformation Behaviour of Multilayer Coatings. Tribol. Lett. 2001, 11, 103–106. [Google Scholar] [CrossRef]
Samples | Sputtering Time (s) | Individual Layer Thickness (nm) | Element Compositions of Monolayer Films (at.%) |
---|---|---|---|
10 nm Ni/Ni3Al-MoW | Ni-MoW 33 (45) | Ni-MoW 10 (45) | Ni 89.6; Mo 5.1; W 5.3 |
Ni3Al-MoW 32 (45) | Ni3Al-MoW 10 (45) | Ni 66.7; Al 23.8; Mo 4.9; W 4.6 | |
40 nm Ni/Ni3Al-MoW | Ni-MoW 130 (12) | Ni-MoW 40 (12) | Ni 90.1; Mo 5.1; W 4.8 |
Ni3Al-MoW 128 (12) | Ni3Al-MoW 40 (12) | Ni 73.3; Al21.1; Mo 5.2; W 5.4 | |
160 nm Ni/Ni3Al-MoW | Ni-MoW 520 (3) | Ni-MoW 160 (3) | Ni 88.9; Mo 5.5; W 5.6 |
Ni3Al-MoW 515 (3) | Ni3Al-MoW 160 (3) | Ni 72.7; Al 16.5; Mo 5.3; W 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Shao, L.; Dai, Y.; Li, D.; Chen, Y. Individual Layer Thickness Dependence of Microstructure and Mechanical Properties of Magnetron Sputtering Mo-W-Doped Ni/Ni3Al Multilayers. Coatings 2022, 12, 1616. https://doi.org/10.3390/coatings12111616
Zhang C, Shao L, Dai Y, Li D, Chen Y. Individual Layer Thickness Dependence of Microstructure and Mechanical Properties of Magnetron Sputtering Mo-W-Doped Ni/Ni3Al Multilayers. Coatings. 2022; 12(11):1616. https://doi.org/10.3390/coatings12111616
Chicago/Turabian StyleZhang, Chao, Lijun Shao, Yuming Dai, Duo Li, and Yuan Chen. 2022. "Individual Layer Thickness Dependence of Microstructure and Mechanical Properties of Magnetron Sputtering Mo-W-Doped Ni/Ni3Al Multilayers" Coatings 12, no. 11: 1616. https://doi.org/10.3390/coatings12111616
APA StyleZhang, C., Shao, L., Dai, Y., Li, D., & Chen, Y. (2022). Individual Layer Thickness Dependence of Microstructure and Mechanical Properties of Magnetron Sputtering Mo-W-Doped Ni/Ni3Al Multilayers. Coatings, 12(11), 1616. https://doi.org/10.3390/coatings12111616