Wall Latex Paint with Graphene Oxide Incorporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. GO Synthesis
2.2. Preparation of Wall Latex Paint with GO Incorporation
2.3. GO and Coatings Characterization
2.4. Application of Wall Latex Paints for Buildings
3. Results and Discussion
3.1. GO and Coating Characterization
3.2. Application of Wall Latex Paints for Buildings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fei, W.; Opoku, A.; Agyekum, K.; Oppon, J.A.; Ahmed, V.; Chen, C.; Lok, K.L. The Critical Role of the Construction Industry in Achieving the Sustainable Development Goals (SDGs): Delivering Projects for the Common Good. Sustainability 2021, 13, 9112. [Google Scholar] [CrossRef]
- Mello, V.M.; Suarez, P.A.Z. As Formulações de Tintas Expressivas Através da História. Rev. Virtual De Química 2012, 4, 2–12. [Google Scholar]
- Gupta, S.; Puttaiahgowda, Y.M.; Nagaraja, A.; Jalageri, M.D. Antimicrobial Polymeric Paints: An up-to-Date Review. Polym. Adv. Technol. 2021, 32, 4642–4662. [Google Scholar] [CrossRef]
- Larson, R.G.; Van Dyk, A.K.; Chatterjee, T.; Ginzburg, V.V. Associative Thickeners for Waterborne Paints: Structure, Characterization, Rheology, and Modeling. Prog. Polym. Sci. 2022, 129, 101546. [Google Scholar] [CrossRef]
- Van Timmeren, A.; Zwetsloot, J.; Brezet, H.; Silvester, S. Sustainable Urban Regeneration Based on Energy Balance. Sustainability 2012, 4, 1488–1509. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Han, M.; Muhammad, Y.; Wei, Y.; Zhu, Z.; Huang, J.; Li, J. A Review on the Development and Application of Graphene Based Materials for the Fabrication of Modified Asphalt and Cement. Constr. Build. Mater. 2021, 285, 122885. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Bartolotta, A.; Coleman, J.N.; Backes, C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Zhang, Y.; Wang, J.; Wei, B. Graphene-Enhanced Nanomaterials for Wall Painting Protection. Adv. Funct. Mater. 2018, 28, 1803872. [Google Scholar] [CrossRef]
- Yu, J.; Lee, C.-H.; Kan, C.-W. Graphene Oxide/Reduced Graphene Oxide Enhanced Noniridescent Structural Colors Based on Silica Photonic Spray Paints with Improved Mechanical Robustness. Nanomaterials 2021, 11, 949. [Google Scholar] [CrossRef]
- Sousa, J.C.A.; Santos, J.C.M.; Rubio, A.J.; Paccola, E.A.S.; Yamaguchi, N.U. Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018. Int. J. Chem. Mater. Eng. 2019, 13, 308–312. [Google Scholar]
- Sun, Z.; Hu, Y.H. Ultrafast, Low-Cost, and Mass Production of High-Quality Graphene. Angew. Chem. Int. Ed. 2020, 59, 9232–9234. [Google Scholar] [CrossRef]
- Berktas, I.; Hezarkhani, M.; Haghighi Poudeh, L.; Saner Okan, B. Recent Developments in the Synthesis of Graphene and Graphene-like Structures from Waste Sources by Recycling and Upcycling Technologies: A Review. Graphene Technol. 2020, 5, 59–73. [Google Scholar] [CrossRef]
- Lin, L.; Peng, H.; Liu, Z. Synthesis Challenges for Graphene Industry. Nat. Mater. 2019, 18, 520–524. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Ferreira, M.E.C.; Soletti, L.d.S.; Bernardino, E.G.; Quesada, H.B.; Gasparotto, F.; Bergamasco, R.; Yamaguchi, N.U. Synergistic Mechanism of Photocatalysis and Photo-Fenton by Manganese Ferrite and Graphene Nanocomposite Supported on Wood Ash with Real Sunlight Irradiation. Catalysts 2022, 12, 745. [Google Scholar] [CrossRef]
- Luciano, A.J.R.; Soletti, L.d.S.; Ferreira, M.E.C.; Cusioli, L.F.; de Andrade, M.B.; Bergamasco, R.; Yamaguchi, N.U. Manganese Ferrite Dispersed over Graphene Sand Composite for Methylene Blue Photocatalytic Degradation. J. Environ. Chem. Eng. 2020, 8, 104191. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs: Sisvar. Braz. J. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Portaria no529; Requisitos de Avaliação da Conformidade para Tintas para Construção Civil. National Institute of Metrology Standardization and Industrial Quality: Brasília, Brazil, 2015.
- ABNT NBR 15079-1; Paints for Buildings—Minimum Requirements for Performance. Part 1: Matte Latex Paint in Light Colors. Brazilian National Standards Organization: São Paulo, Brazil, 2011.
- ABNT NBR 14942; Paints for Buildings—Method for Performance Evaluation of Paints for Non Industrial Buildings—Determinantion of Dry Paint Film Hiding Power and Theoretical Yield. Brazilian National Standards Organization: São Paulo, Brazil, 2016.
- ABNT NBR 14943; Tintas Para Construção Civil—Método Para Avaliação de Desempenho de Tintas Para Edificações Não Industriais—Determinação Do Poder de Cobertura de Tinta Úmida. Brazilian National Standards Organization: São Paulo, Brazil, 2018.
- ABNT NBR 14940; Tintas Para Construção Civil—Método Para Avaliação de Desempenho de Tintas Para Edificações Não Industriais—Determinação Da Resistência à Abrasão Úmida. Brazilian National Standards Organization: São Paulo, Brazil, 2018.
- Giaveri, S.; Gronchi, P.; Barzoni, A. IPN Polysiloxane-Epoxy Resin for High Temperature Coatings: Structure Effects on Layer Performance after 450 °C Treatment. Coatings 2017, 7, 213. [Google Scholar] [CrossRef] [Green Version]
- Singhbabu, Y.N.; Sivakumar, B.; Singh, J.K.; Bapari, H.; Pramanick, A.K.; Sahu, R.K. Efficient Anti-Corrosive Coating of Cold-Rolled Steel in a Seawater Environment Using an Oil-Based Graphene Oxide Ink. Nanoscale 2015, 7, 8035–8047. [Google Scholar] [CrossRef]
- Tung, T.T.; Alotaibi, F.; Nine, M.J.; Silva, R.; Tran, D.N.H.; Janowska, I.; Losic, D. Engineering of Highly Conductive and Ultra-Thin Nitrogen-Doped Graphene Films by Combined Methods of Microwave Irradiation, Ultrasonic Spraying and Thermal Annealing. Chem. Eng. J. 2018, 338, 764–773. [Google Scholar] [CrossRef]
- Gázquez, M.J.; Bolívar, J.P.; Garcia-Tenorio, R.; Vaca, F. A Review of the Production Cycle of Titanium Dioxide Pigment. Mater. Sci. Appl. 2014, 5, 441–458. [Google Scholar] [CrossRef]
- Liang, Y.; Ding, H. Mineral-TiO2 Composites:Preparation and Application in Papermaking, Paints and Plastics. J. Alloy. Compd. 2020, 844, 156139. [Google Scholar] [CrossRef]
- Razali, M.N.B.; Alkaf, A.A.; Zuhan, M.K.N.B.M. Formulation of Water-Based White Colour Paint from Waste Titanium Dioxide. Mater. Today Proc. 2022, 48, 1905–1909. [Google Scholar] [CrossRef]
- Lima, A.M.; Faria, G.S.; Nardecchia, S.; Cruz, L.R.D.O.; Souza, M.D.M.V.M.; Pinheiro, W.A. Produção e caracterização de filmes finos transparentes e condutores de óxido de grafeno reduzido. Matéria 2017, 22, e11908. [Google Scholar] [CrossRef] [Green Version]
- Rodbari, R.J.; Wendelbo, R.; Jamshidi, L.C.L.A.; Hernández, E.P.; Nascimento, L. Study of Physical and Chemical Characterization of Nanocomposite Polystyrene/Graphene Oxide High Acidity can be Applied in Thin Films. J. Chil. Chem. Soc. 2016, 61, 3120–3124. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Li, Z.; Huo, Q.; Guan, J.; Kan, Q. Immobilization of Transition Metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff Base Complexes onto Graphene Oxide as Efficient and Recyclable Catalysts for Epoxidation of Styrene. RSC Adv. 2014, 4, 9990–9996. [Google Scholar] [CrossRef]
- Dashtizadeh, A.; Abdouss, M.; Mahdavi, H.; Khorassani, M.; Hosseini, J. Modification and Improvement of Acrylic Emulsion Paints by Reducing Organic Raw Materials and Using Silica Nanocomposite. J. Polym. Eng. 2013, 33, 357–367. [Google Scholar] [CrossRef]
- Cruz, C.G.; da Silveira, J.T.; Ferrari, F.M.; Costa, J.A.V.; da Rosa, A.P.C. The Use of Poly (3-Hydroxybutyrate), C-Phycocyanin, and Phenolic Compounds Extracted from Spirulina Sp. LEB 18 in Latex Paint Formulations. Prog. Org. Coat. 2019, 135, 100–104. [Google Scholar] [CrossRef]
- Dragnevski, K.I.; Donald, A.M. An Environmental Scanning Electron Microscopy Examination of the Film Formation Mechanism of Novel Acrylic Latex. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 551–556. [Google Scholar] [CrossRef]
- Xiong, P.; Hu, C.; Fan, Y.; Zhang, W.; Zhu, J.; Wang, X. Ternary Manganese Ferrite/Graphene/Polyaniline Nanostructure with Enhanced Electrochemical Capacitance Performance. J. Power Sources 2014, 266, 384–392. [Google Scholar] [CrossRef]
- Jeoung-Ah, K. The Characterisation of Paper Composite Porcelain in a Fired State by XRD and SEM. J. Eur. Ceram. Soc. 2004, 24, 3823–3831. [Google Scholar] [CrossRef]
- Li, T.; Sui, F.; Li, F.; Cai, Y.; Jin, Z. Effects of Dry Grinding on the Structure and Granularity of Calcite and Its Polymorphic Transformation into Aragonite. Powder Technol. 2014, 254, 338–343. [Google Scholar] [CrossRef]
- Li, Y.; Luo, J.; Huang, B.; Jin, H.; Sun, X.; Cao, C.; Chen, Q.; Qian, Q. Fabrication of Graphene-Modified Styrene–Acrylic Emulsion by In Situ Aqueous Polymerization. Polymers 2022, 14, 3763. [Google Scholar] [CrossRef]
- Zhirong, L.; Uddin, M.A.; Zhanxue, S. FT-IR and XRD Analysis of Natural Na-Bentonite and Cu(II)-Loaded Na-Bentonite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1013–1016. [Google Scholar] [CrossRef]
- Cavalcanti, W.S.; Brito, G.D.F.; Agrawal, P.; Mélo, T.J.A.D.; Neves, G.D.A.; Dantas, M.M. Purificação e organofilização em escala piloto de argilas bentoníticas com tensoativo não iônico e aplicação em nanocompósitos poliméricos. Polímeros 2014, 24, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Topçuoğlu, Ö.; Altinkaya, S.A.; Balköse, D. Characterization of Waterborne Acrylic Based Paint Films and Measurement of Their Water Vapor Permeabilities. Prog. Org. Coat. 2006, 56, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Guo, R.; Ma, J. Hierarchical Flower-Like Hollow SiO2@TiO2 Spheres with Enhanced Thermal Insulation and Ultraviolet Resistance Performances for Building Coating. ACS Appl. Mater. Interfaces 2020, 12, 24250–24261. [Google Scholar] [CrossRef]
- Beitollahi, H.; Hamzavi, M.; Torkzadeh-Mahani, M. Electrochemical Determination of Hydrochlorothiazide and Folic Acid in Real Samples Using a Modified Graphene Oxide Sheet Paste Electrode. Mater. Sci. Eng. C 2015, 52, 297–305. [Google Scholar] [CrossRef]
- Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. Large Reversible Capacity of High Quality Graphene Sheets as an Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2010, 55, 3909–3914. [Google Scholar] [CrossRef]
- Colthup, N.B.; Daly, L.H.; Wiberley, S.E. (Eds.) Copyright. In Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press: San Diego, CA, USA, 1990; p. iv. ISBN 978-0-12-182554-6. [Google Scholar]
- Viitala, R.I.; Langlet, M.; Simola, J.; Lindén, M.; Rosenholm, J.B. Aerosol–Gel Deposition of Doped Titania Thin Films. Thin Solid Films 2000, 368, 35–40. [Google Scholar] [CrossRef]
- Burgos, M.; Langlet, M. The Sol-Gel Transformation of TIPT Coatings: A FTIR Study. Thin Solid Films 1999, 349, 19–23. [Google Scholar] [CrossRef]
- Zhang, X.; Li, K.; Li, H.; Lu, J. Dipotassium Hydrogen Phosphate as Reducing Agent for the Efficient Reduction of Graphene Oxide Nanosheets. J. Colloid Interface Sci. 2013, 409, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Fu, P.; Teri, G.-L.; Chao, X.-L.; Li, J.; Li, Y.-H.; Yang, H. Modified Graphene-FEVE Composite Coatings: Application in the Repair of Ancient Architectural Color Paintings. Coatings 2020, 10, 1162. [Google Scholar] [CrossRef]
- Sbardella, F.; Pronti, L.; Santarelli, M.L.; Asua Gonzàlez, J.M.; Bracciale, M.P. Waterborne Acrylate-Based Hybrid Coatings with Enhanced Resistance Properties on Stone Surfaces. Coatings 2018, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Shah, A.A.; Nam, S.-E.; Park, Y.-I.; Park, H. Thin-Film Composite Membranes Comprising Ultrathin Hydrophilic Polydopamine Interlayer with Graphene Oxide for Forward Osmosis. Desalination 2019, 449, 41–49. [Google Scholar] [CrossRef]
- Kim, J.; Khoh, W.-H.; Wee, B.-H.; Hong, J.-D. Fabrication of Flexible Reduced Graphene Oxide–TiO2 Freestanding Films for Supercapacitor Application. RSC Adv. 2015, 5, 9904–9911. [Google Scholar] [CrossRef]
- Kubiak, K.J.; Wilson, M.C.T.; Mathia, T.G.; Carval, P. Wettability versus Roughness of Engineering Surfaces. Wear 2011, 271, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Saleiro, G.T.; Cardoso, S.L.; Toledo, R.; Holanda, J.N.F. Evaluation of the Crystalline Phases of Supported Titanium Dioxide in Red Ceramic. Cerâmica 2010, 56, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Tamburrano, A.; Proietti, A.; Fortunato, M.; Pesce, N.; Sarto, M.S. Exploring the Capabilities of a Piezoresistive Graphene-Loaded Waterborne Paint for Discrete Strain and Spatial Sensing. Sensors 2022, 22, 4241. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Muhammad, Y.; Yin, Y.; Meng, F.; Wei, Y.; Yang, H. Synthesis and Properties of Polydimethylsiloxane/Graphene Oxide Modified, Water-Based Polyurethane/Polyacrylate. J. Appl. Polym. Sci. 2019, 136, 47926. [Google Scholar] [CrossRef]
Test | Unit | Performance Requirements | Reference |
---|---|---|---|
Dry paint film hiding power | m2/L | ≥6.0 | [21] |
Wet paint hiding power | % | ≥90.0 | [22] |
Wet abrasion resistance with abrasive paste | cycles | ≥100 | [23] |
Paint | Application | Results | Reference |
---|---|---|---|
Water, pyrene, CaOH, and graphene quantum dot | Cultural heritage materials | Small 80 nm nanohybrids improved adhesivity, uniformity, anti-UV, and CaCO3 formation. | [9] |
Styrene-acrylic architectural coating and graphene | Electromagnetic interference (EMI) shielding | 4% of graphene content improved dispersion stability, water and oxygen resistance, conductivity, and EMI shielding. | [39] |
Trifluorovinyl chloride and vinyl ether copolymer and modified graphene oxide | Repair ancient architectural color paintings | Graphene oxide incorporation improved contact angle, water absorption, shear strength, light shielding performance, resistance to aging and salt. | [51] |
Commercial water-based polyurethane paint with graphene nanoplatelets | Discrete strain and spatial sensing | The paint presented reduced adhesion and significant performance as discrete strain and spatial sensor. | [57] |
Polydimethylsiloxane–graphene oxide modified waterborne polyurethane acrylate | Coatings painted on tunnels and highways | Improved thermal, mechanical, and hydrophobic properties. | [58] |
Commercial premium latex matt paint and graphene oxide | Domestic application | 1% of graphene oxide content improved mixture, hiding power, hydrophobicity, and CaCO3 crystallization. | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo Sousa, J.C.; de Sousa, R.J.; de Lima, B.P.; Cusioli, L.F.; Gomes Corrêa, R.C.; Bergamasco, R.; Ueda Yamaguchi, N. Wall Latex Paint with Graphene Oxide Incorporation. Coatings 2022, 12, 1652. https://doi.org/10.3390/coatings12111652
Araujo Sousa JC, de Sousa RJ, de Lima BP, Cusioli LF, Gomes Corrêa RC, Bergamasco R, Ueda Yamaguchi N. Wall Latex Paint with Graphene Oxide Incorporation. Coatings. 2022; 12(11):1652. https://doi.org/10.3390/coatings12111652
Chicago/Turabian StyleAraujo Sousa, Jean Carlos, Rudnei José de Sousa, Bruna Pietroski de Lima, Luís Fernando Cusioli, Rúbia Carvalho Gomes Corrêa, Rosângela Bergamasco, and Natália Ueda Yamaguchi. 2022. "Wall Latex Paint with Graphene Oxide Incorporation" Coatings 12, no. 11: 1652. https://doi.org/10.3390/coatings12111652
APA StyleAraujo Sousa, J. C., de Sousa, R. J., de Lima, B. P., Cusioli, L. F., Gomes Corrêa, R. C., Bergamasco, R., & Ueda Yamaguchi, N. (2022). Wall Latex Paint with Graphene Oxide Incorporation. Coatings, 12(11), 1652. https://doi.org/10.3390/coatings12111652